Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngacmnd Structured version   Visualization version   GIF version

Theorem 2zrngacmnd 48258
Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngacmnd 𝑅 ∈ CMnd
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngacmnd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
210even 48247 . 2 0 ∈ 𝐸
3 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
41, 32zrngbas 48252 . . . 4 𝐸 = (Base‘𝑅)
54a1i 11 . . 3 (0 ∈ 𝐸𝐸 = (Base‘𝑅))
61, 32zrngadd 48253 . . . 4 + = (+g𝑅)
76a1i 11 . . 3 (0 ∈ 𝐸 → + = (+g𝑅))
81, 32zrngamnd 48257 . . . 4 𝑅 ∈ Mnd
98a1i 11 . . 3 (0 ∈ 𝐸𝑅 ∈ Mnd)
10 elrabi 3641 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℤ)
1110zcnd 12570 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℂ)
1211, 1eleq2s 2847 . . . . . 6 (𝑥𝐸𝑥 ∈ ℂ)
1312adantr 480 . . . . 5 ((𝑥𝐸𝑦𝐸) → 𝑥 ∈ ℂ)
14 elrabi 3641 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
1514zcnd 12570 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ)
1615, 1eleq2s 2847 . . . . . 6 (𝑦𝐸𝑦 ∈ ℂ)
1716adantl 481 . . . . 5 ((𝑥𝐸𝑦𝐸) → 𝑦 ∈ ℂ)
1813, 17addcomd 11307 . . . 4 ((𝑥𝐸𝑦𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
19183adant1 1130 . . 3 ((0 ∈ 𝐸𝑥𝐸𝑦𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
205, 7, 9, 19iscmnd 19699 . 2 (0 ∈ 𝐸𝑅 ∈ CMnd)
212, 20ax-mp 5 1 𝑅 ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2110  wrex 3054  {crab 3393  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998   + caddc 11001   · cmul 11003  2c2 12172  cz 12460  Basecbs 17112  s cress 17133  +gcplusg 17153  Mndcmnd 18634  CMndccmn 19685  fldccnfld 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-cmn 19687  df-cnfld 21285
This theorem is referenced by:  2zrngaabl  48260
  Copyright terms: Public domain W3C validator