Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngacmnd Structured version   Visualization version   GIF version

Theorem 2zrngacmnd 47498
Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngacmnd 𝑅 ∈ CMnd
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngacmnd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
210even 47487 . 2 0 ∈ 𝐸
3 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
41, 32zrngbas 47492 . . . 4 𝐸 = (Base‘𝑅)
54a1i 11 . . 3 (0 ∈ 𝐸𝐸 = (Base‘𝑅))
61, 32zrngadd 47493 . . . 4 + = (+g𝑅)
76a1i 11 . . 3 (0 ∈ 𝐸 → + = (+g𝑅))
81, 32zrngamnd 47497 . . . 4 𝑅 ∈ Mnd
98a1i 11 . . 3 (0 ∈ 𝐸𝑅 ∈ Mnd)
10 elrabi 3673 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℤ)
1110zcnd 12705 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℂ)
1211, 1eleq2s 2843 . . . . . 6 (𝑥𝐸𝑥 ∈ ℂ)
1312adantr 479 . . . . 5 ((𝑥𝐸𝑦𝐸) → 𝑥 ∈ ℂ)
14 elrabi 3673 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
1514zcnd 12705 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ)
1615, 1eleq2s 2843 . . . . . 6 (𝑦𝐸𝑦 ∈ ℂ)
1716adantl 480 . . . . 5 ((𝑥𝐸𝑦𝐸) → 𝑦 ∈ ℂ)
1813, 17addcomd 11453 . . . 4 ((𝑥𝐸𝑦𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
19183adant1 1127 . . 3 ((0 ∈ 𝐸𝑥𝐸𝑦𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
205, 7, 9, 19iscmnd 19766 . 2 (0 ∈ 𝐸𝑅 ∈ CMnd)
212, 20ax-mp 5 1 𝑅 ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  wrex 3059  {crab 3418  cfv 6549  (class class class)co 7419  cc 11143  0cc0 11145   + caddc 11148   · cmul 11150  2c2 12305  cz 12596  Basecbs 17188  s cress 17217  +gcplusg 17241  Mndcmnd 18702  CMndccmn 19752  fldccnfld 21301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-addf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-starv 17256  df-tset 17260  df-ple 17261  df-ds 17263  df-unif 17264  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-cmn 19754  df-cnfld 21302
This theorem is referenced by:  2zrngaabl  47500
  Copyright terms: Public domain W3C validator