| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngacmnd | Structured version Visualization version GIF version | ||
| Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| Ref | Expression |
|---|---|
| 2zrngacmnd | ⊢ 𝑅 ∈ CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 1 | 0even 48179 | . 2 ⊢ 0 ∈ 𝐸 |
| 3 | 2zrngbas.r | . . . . 5 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 4 | 1, 3 | 2zrngbas 48184 | . . . 4 ⊢ 𝐸 = (Base‘𝑅) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (0 ∈ 𝐸 → 𝐸 = (Base‘𝑅)) |
| 6 | 1, 3 | 2zrngadd 48185 | . . . 4 ⊢ + = (+g‘𝑅) |
| 7 | 6 | a1i 11 | . . 3 ⊢ (0 ∈ 𝐸 → + = (+g‘𝑅)) |
| 8 | 1, 3 | 2zrngamnd 48189 | . . . 4 ⊢ 𝑅 ∈ Mnd |
| 9 | 8 | a1i 11 | . . 3 ⊢ (0 ∈ 𝐸 → 𝑅 ∈ Mnd) |
| 10 | elrabi 3671 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℤ) | |
| 11 | 10 | zcnd 12703 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℂ) |
| 12 | 11, 1 | eleq2s 2853 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ ℂ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → 𝑥 ∈ ℂ) |
| 14 | elrabi 3671 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
| 15 | 14 | zcnd 12703 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ) |
| 16 | 15, 1 | eleq2s 2853 | . . . . . 6 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → 𝑦 ∈ ℂ) |
| 18 | 13, 17 | addcomd 11442 | . . . 4 ⊢ ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 19 | 18 | 3adant1 1130 | . . 3 ⊢ ((0 ∈ 𝐸 ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 20 | 5, 7, 9, 19 | iscmnd 19780 | . 2 ⊢ (0 ∈ 𝐸 → 𝑅 ∈ CMnd) |
| 21 | 2, 20 | ax-mp 5 | 1 ⊢ 𝑅 ∈ CMnd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 + caddc 11137 · cmul 11139 2c2 12300 ℤcz 12593 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 Mndcmnd 18717 CMndccmn 19766 ℂfldccnfld 21320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-cmn 19768 df-cnfld 21321 |
| This theorem is referenced by: 2zrngaabl 48192 |
| Copyright terms: Public domain | W3C validator |