Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngacmnd Structured version   Visualization version   GIF version

Theorem 2zrngacmnd 45452
Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngacmnd 𝑅 ∈ CMnd
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧

Proof of Theorem 2zrngacmnd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
210even 45441 . 2 0 ∈ 𝐸
3 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
41, 32zrngbas 45446 . . . 4 𝐸 = (Base‘𝑅)
54a1i 11 . . 3 (0 ∈ 𝐸𝐸 = (Base‘𝑅))
61, 32zrngadd 45447 . . . 4 + = (+g𝑅)
76a1i 11 . . 3 (0 ∈ 𝐸 → + = (+g𝑅))
81, 32zrngamnd 45451 . . . 4 𝑅 ∈ Mnd
98a1i 11 . . 3 (0 ∈ 𝐸𝑅 ∈ Mnd)
10 elrabi 3619 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℤ)
1110zcnd 12409 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℂ)
1211, 1eleq2s 2858 . . . . . 6 (𝑥𝐸𝑥 ∈ ℂ)
1312adantr 480 . . . . 5 ((𝑥𝐸𝑦𝐸) → 𝑥 ∈ ℂ)
14 elrabi 3619 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ)
1514zcnd 12409 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ)
1615, 1eleq2s 2858 . . . . . 6 (𝑦𝐸𝑦 ∈ ℂ)
1716adantl 481 . . . . 5 ((𝑥𝐸𝑦𝐸) → 𝑦 ∈ ℂ)
1813, 17addcomd 11160 . . . 4 ((𝑥𝐸𝑦𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
19183adant1 1128 . . 3 ((0 ∈ 𝐸𝑥𝐸𝑦𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
205, 7, 9, 19iscmnd 19380 . 2 (0 ∈ 𝐸𝑅 ∈ CMnd)
212, 20ax-mp 5 1 𝑅 ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2109  wrex 3066  {crab 3069  cfv 6430  (class class class)co 7268  cc 10853  0cc0 10855   + caddc 10858   · cmul 10860  2c2 12011  cz 12302  Basecbs 16893  s cress 16922  +gcplusg 16943  Mndcmnd 18366  CMndccmn 19367  fldccnfld 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-addf 10934
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-cmn 19369  df-cnfld 20579
This theorem is referenced by:  2zrngaabl  45454
  Copyright terms: Public domain W3C validator