| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngacmnd | Structured version Visualization version GIF version | ||
| Description: R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| Ref | Expression |
|---|---|
| 2zrngacmnd | ⊢ 𝑅 ∈ CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 1 | 0even 48215 | . 2 ⊢ 0 ∈ 𝐸 |
| 3 | 2zrngbas.r | . . . . 5 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 4 | 1, 3 | 2zrngbas 48220 | . . . 4 ⊢ 𝐸 = (Base‘𝑅) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (0 ∈ 𝐸 → 𝐸 = (Base‘𝑅)) |
| 6 | 1, 3 | 2zrngadd 48221 | . . . 4 ⊢ + = (+g‘𝑅) |
| 7 | 6 | a1i 11 | . . 3 ⊢ (0 ∈ 𝐸 → + = (+g‘𝑅)) |
| 8 | 1, 3 | 2zrngamnd 48225 | . . . 4 ⊢ 𝑅 ∈ Mnd |
| 9 | 8 | a1i 11 | . . 3 ⊢ (0 ∈ 𝐸 → 𝑅 ∈ Mnd) |
| 10 | elrabi 3656 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℤ) | |
| 11 | 10 | zcnd 12645 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑥 ∈ ℂ) |
| 12 | 11, 1 | eleq2s 2847 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ ℂ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → 𝑥 ∈ ℂ) |
| 14 | elrabi 3656 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℤ) | |
| 15 | 14 | zcnd 12645 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑦 ∈ ℂ) |
| 16 | 15, 1 | eleq2s 2847 | . . . . . 6 ⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ ℂ) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → 𝑦 ∈ ℂ) |
| 18 | 13, 17 | addcomd 11382 | . . . 4 ⊢ ((𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 19 | 18 | 3adant1 1130 | . . 3 ⊢ ((0 ∈ 𝐸 ∧ 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 20 | 5, 7, 9, 19 | iscmnd 19730 | . 2 ⊢ (0 ∈ 𝐸 → 𝑅 ∈ CMnd) |
| 21 | 2, 20 | ax-mp 5 | 1 ⊢ 𝑅 ∈ CMnd |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 + caddc 11077 · cmul 11079 2c2 12242 ℤcz 12535 Basecbs 17185 ↾s cress 17206 +gcplusg 17226 Mndcmnd 18667 CMndccmn 19716 ℂfldccnfld 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-addf 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-cmn 19718 df-cnfld 21271 |
| This theorem is referenced by: 2zrngaabl 48228 |
| Copyright terms: Public domain | W3C validator |