MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablprop Structured version   Visualization version   GIF version

Theorem ablprop 19653
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
ablprop.b (Base‘𝐾) = (Base‘𝐿)
ablprop.p (+g𝐾) = (+g𝐿)
Assertion
Ref Expression
ablprop (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)

Proof of Theorem ablprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 ablprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 ablprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 7416 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 11 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
71, 3, 6ablpropd 19652 . 2 (⊤ → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
87mptru 1549 1 (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wtru 1543  wcel 2107  cfv 6539  (class class class)co 7403  Basecbs 17139  +gcplusg 17192  Abelcabl 19641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-iota 6491  df-fun 6541  df-fv 6547  df-ov 7406  df-0g 17382  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-grp 18817  df-cmn 19642  df-abl 19643
This theorem is referenced by:  zlmlmod  21059  dvaabl  39832  opprrng  46608  cznabel  46753
  Copyright terms: Public domain W3C validator