|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ablprop | Structured version Visualization version GIF version | ||
| Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.) | 
| Ref | Expression | 
|---|---|
| ablprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) | 
| ablprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) | 
| Ref | Expression | 
|---|---|
| ablprop | ⊢ (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2737 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | ablprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) | 
| 4 | ablprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 5 | 4 | oveqi 7445 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) | 
| 6 | 5 | a1i 11 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | 
| 7 | 1, 3, 6 | ablpropd 19811 | . 2 ⊢ (⊤ → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) | 
| 8 | 7 | mptru 1546 | 1 ⊢ (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 Abelcabl 19800 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-cmn 19801 df-abl 19802 | 
| This theorem is referenced by: opprrng 20346 zlmlmod 21538 dvaabl 41027 opprablb 42528 cznabel 48181 | 
| Copyright terms: Public domain | W3C validator |