MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablprop Structured version   Visualization version   GIF version

Theorem ablprop 19313
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
ablprop.b (Base‘𝐾) = (Base‘𝐿)
ablprop.p (+g𝐾) = (+g𝐿)
Assertion
Ref Expression
ablprop (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)

Proof of Theorem ablprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 ablprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 ablprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 7268 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 11 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
71, 3, 6ablpropd 19312 . 2 (⊤ → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
87mptru 1546 1 (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-cmn 19303  df-abl 19304
This theorem is referenced by:  zlmlmod  20640  dvaabl  38965  cznabel  45400
  Copyright terms: Public domain W3C validator