MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablprop Structured version   Visualization version   GIF version

Theorem ablprop 18910
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
ablprop.b (Base‘𝐾) = (Base‘𝐿)
ablprop.p (+g𝐾) = (+g𝐿)
Assertion
Ref Expression
ablprop (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)

Proof of Theorem ablprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2799 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 ablprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 11 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 ablprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 7148 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 11 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
71, 3, 6ablpropd 18909 . 2 (⊤ → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
87mptru 1545 1 (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wtru 1539  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-cmn 18900  df-abl 18901
This theorem is referenced by:  zlmlmod  20216  dvaabl  38320  cznabel  44578
  Copyright terms: Public domain W3C validator