MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcmn Structured version   Visualization version   GIF version

Theorem subcmn 19816
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypothesis
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subcmn ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)

Proof of Theorem subcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (Base‘𝐻) = (Base‘𝐻))
2 eqid 2735 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2735 . . . . . . 7 (0g𝐻) = (0g𝐻)
42, 3mndidcl 18725 . . . . . 6 (𝐻 ∈ Mnd → (0g𝐻) ∈ (Base‘𝐻))
5 n0i 4315 . . . . . 6 ((0g𝐻) ∈ (Base‘𝐻) → ¬ (Base‘𝐻) = ∅)
64, 5syl 17 . . . . 5 (𝐻 ∈ Mnd → ¬ (Base‘𝐻) = ∅)
7 subgabl.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
8 reldmress 17251 . . . . . . . . 9 Rel dom ↾s
98ovprc2 7443 . . . . . . . 8 𝑆 ∈ V → (𝐺s 𝑆) = ∅)
107, 9eqtrid 2782 . . . . . . 7 𝑆 ∈ V → 𝐻 = ∅)
1110fveq2d 6879 . . . . . 6 𝑆 ∈ V → (Base‘𝐻) = (Base‘∅))
12 base0 17231 . . . . . 6 ∅ = (Base‘∅)
1311, 12eqtr4di 2788 . . . . 5 𝑆 ∈ V → (Base‘𝐻) = ∅)
146, 13nsyl2 141 . . . 4 (𝐻 ∈ Mnd → 𝑆 ∈ V)
1514adantl 481 . . 3 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝑆 ∈ V)
16 eqid 2735 . . . 4 (+g𝐺) = (+g𝐺)
177, 16ressplusg 17303 . . 3 (𝑆 ∈ V → (+g𝐺) = (+g𝐻))
1815, 17syl 17 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (+g𝐺) = (+g𝐻))
19 simpr 484 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ Mnd)
20 simpl 482 . . 3 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐺 ∈ CMnd)
21 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
227, 21ressbasss 17258 . . . 4 (Base‘𝐻) ⊆ (Base‘𝐺)
2322sseli 3954 . . 3 (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ (Base‘𝐺))
2422sseli 3954 . . 3 (𝑦 ∈ (Base‘𝐻) → 𝑦 ∈ (Base‘𝐺))
2521, 16cmncom 19777 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
2620, 23, 24, 25syl3an 1160 . 2 (((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
271, 18, 19, 26iscmnd 19773 1 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cfv 6530  (class class class)co 7403  Basecbs 17226  s cress 17249  +gcplusg 17269  0gc0g 17451  Mndcmnd 18710  CMndccmn 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-cmn 19761
This theorem is referenced by:  submcmn  19817  unitabl  20342  subrgcrng  20533  xrge0cmn  21374  tsmssubm  24079  amgmlem  26950  amgmwlem  49614  amgmlemALT  49615
  Copyright terms: Public domain W3C validator