MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcmn Structured version   Visualization version   GIF version

Theorem subcmn 19665
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypothesis
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subcmn ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)

Proof of Theorem subcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (Base‘𝐻) = (Base‘𝐻))
2 eqid 2731 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2731 . . . . . . 7 (0g𝐻) = (0g𝐻)
42, 3mndidcl 18617 . . . . . 6 (𝐻 ∈ Mnd → (0g𝐻) ∈ (Base‘𝐻))
5 n0i 4329 . . . . . 6 ((0g𝐻) ∈ (Base‘𝐻) → ¬ (Base‘𝐻) = ∅)
64, 5syl 17 . . . . 5 (𝐻 ∈ Mnd → ¬ (Base‘𝐻) = ∅)
7 subgabl.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
8 reldmress 17157 . . . . . . . . 9 Rel dom ↾s
98ovprc2 7433 . . . . . . . 8 𝑆 ∈ V → (𝐺s 𝑆) = ∅)
107, 9eqtrid 2783 . . . . . . 7 𝑆 ∈ V → 𝐻 = ∅)
1110fveq2d 6882 . . . . . 6 𝑆 ∈ V → (Base‘𝐻) = (Base‘∅))
12 base0 17131 . . . . . 6 ∅ = (Base‘∅)
1311, 12eqtr4di 2789 . . . . 5 𝑆 ∈ V → (Base‘𝐻) = ∅)
146, 13nsyl2 141 . . . 4 (𝐻 ∈ Mnd → 𝑆 ∈ V)
1514adantl 482 . . 3 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝑆 ∈ V)
16 eqid 2731 . . . 4 (+g𝐺) = (+g𝐺)
177, 16ressplusg 17217 . . 3 (𝑆 ∈ V → (+g𝐺) = (+g𝐻))
1815, 17syl 17 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (+g𝐺) = (+g𝐻))
19 simpr 485 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ Mnd)
20 simpl 483 . . 3 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐺 ∈ CMnd)
21 eqid 2731 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
227, 21ressbasss 17165 . . . 4 (Base‘𝐻) ⊆ (Base‘𝐺)
2322sseli 3974 . . 3 (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ (Base‘𝐺))
2422sseli 3974 . . 3 (𝑦 ∈ (Base‘𝐻) → 𝑦 ∈ (Base‘𝐺))
2521, 16cmncom 19630 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
2620, 23, 24, 25syl3an 1160 . 2 (((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
271, 18, 19, 26iscmnd 19626 1 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3473  c0 4318  cfv 6532  (class class class)co 7393  Basecbs 17126  s cress 17155  +gcplusg 17179  0gc0g 17367  Mndcmnd 18602  CMndccmn 19612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-cmn 19614
This theorem is referenced by:  submcmn  19666  unitabl  20150  subrgcrng  20316  xrge0cmn  20921  tsmssubm  23576  amgmlem  26421  amgmwlem  47497  amgmlemALT  47498
  Copyright terms: Public domain W3C validator