Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcmn | Structured version Visualization version GIF version |
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2760 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (Base‘𝐻) = (Base‘𝐻)) | |
2 | eqid 2759 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
3 | eqid 2759 | . . . . . . 7 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
4 | 2, 3 | mndidcl 17985 | . . . . . 6 ⊢ (𝐻 ∈ Mnd → (0g‘𝐻) ∈ (Base‘𝐻)) |
5 | n0i 4233 | . . . . . 6 ⊢ ((0g‘𝐻) ∈ (Base‘𝐻) → ¬ (Base‘𝐻) = ∅) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐻 ∈ Mnd → ¬ (Base‘𝐻) = ∅) |
7 | subgabl.h | . . . . . . . 8 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
8 | reldmress 16601 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
9 | 8 | ovprc2 7191 | . . . . . . . 8 ⊢ (¬ 𝑆 ∈ V → (𝐺 ↾s 𝑆) = ∅) |
10 | 7, 9 | syl5eq 2806 | . . . . . . 7 ⊢ (¬ 𝑆 ∈ V → 𝐻 = ∅) |
11 | 10 | fveq2d 6663 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = (Base‘∅)) |
12 | base0 16587 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
13 | 11, 12 | eqtr4di 2812 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = ∅) |
14 | 6, 13 | nsyl2 143 | . . . 4 ⊢ (𝐻 ∈ Mnd → 𝑆 ∈ V) |
15 | 14 | adantl 486 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝑆 ∈ V) |
16 | eqid 2759 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 7, 16 | ressplusg 16663 | . . 3 ⊢ (𝑆 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
18 | 15, 17 | syl 17 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (+g‘𝐺) = (+g‘𝐻)) |
19 | simpr 489 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ Mnd) | |
20 | simpl 487 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐺 ∈ CMnd) | |
21 | eqid 2759 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
22 | 7, 21 | ressbasss 16607 | . . . 4 ⊢ (Base‘𝐻) ⊆ (Base‘𝐺) |
23 | 22 | sseli 3889 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ (Base‘𝐺)) |
24 | 22 | sseli 3889 | . . 3 ⊢ (𝑦 ∈ (Base‘𝐻) → 𝑦 ∈ (Base‘𝐺)) |
25 | 21, 16 | cmncom 18983 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
26 | 20, 23, 24, 25 | syl3an 1158 | . 2 ⊢ (((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
27 | 1, 18, 19, 26 | iscmnd 18979 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4226 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 ↾s cress 16535 +gcplusg 16616 0gc0g 16764 Mndcmnd 17970 CMndccmn 18966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-0g 16766 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-cmn 18968 |
This theorem is referenced by: submcmn 19019 unitabl 19482 subrgcrng 19600 xrge0cmn 20201 tsmssubm 22836 amgmlem 25667 amgmwlem 45714 amgmlemALT 45715 |
Copyright terms: Public domain | W3C validator |