| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcmn | Structured version Visualization version GIF version | ||
| Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (Base‘𝐻) = (Base‘𝐻)) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 4 | 2, 3 | mndidcl 18658 | . . . . . 6 ⊢ (𝐻 ∈ Mnd → (0g‘𝐻) ∈ (Base‘𝐻)) |
| 5 | n0i 4299 | . . . . . 6 ⊢ ((0g‘𝐻) ∈ (Base‘𝐻) → ¬ (Base‘𝐻) = ∅) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐻 ∈ Mnd → ¬ (Base‘𝐻) = ∅) |
| 7 | subgabl.h | . . . . . . . 8 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 8 | reldmress 17178 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
| 9 | 8 | ovprc2 7409 | . . . . . . . 8 ⊢ (¬ 𝑆 ∈ V → (𝐺 ↾s 𝑆) = ∅) |
| 10 | 7, 9 | eqtrid 2776 | . . . . . . 7 ⊢ (¬ 𝑆 ∈ V → 𝐻 = ∅) |
| 11 | 10 | fveq2d 6844 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = (Base‘∅)) |
| 12 | base0 17160 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 13 | 11, 12 | eqtr4di 2782 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = ∅) |
| 14 | 6, 13 | nsyl2 141 | . . . 4 ⊢ (𝐻 ∈ Mnd → 𝑆 ∈ V) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝑆 ∈ V) |
| 16 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 7, 16 | ressplusg 17230 | . . 3 ⊢ (𝑆 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 18 | 15, 17 | syl 17 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (+g‘𝐺) = (+g‘𝐻)) |
| 19 | simpr 484 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ Mnd) | |
| 20 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐺 ∈ CMnd) | |
| 21 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 22 | 7, 21 | ressbasss 17185 | . . . 4 ⊢ (Base‘𝐻) ⊆ (Base‘𝐺) |
| 23 | 22 | sseli 3939 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ (Base‘𝐺)) |
| 24 | 22 | sseli 3939 | . . 3 ⊢ (𝑦 ∈ (Base‘𝐻) → 𝑦 ∈ (Base‘𝐺)) |
| 25 | 21, 16 | cmncom 19712 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 26 | 20, 23, 24, 25 | syl3an 1160 | . 2 ⊢ (((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 27 | 1, 18, 19, 26 | iscmnd 19708 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 0gc0g 17378 Mndcmnd 18643 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-cmn 19696 |
| This theorem is referenced by: submcmn 19752 unitabl 20304 subrgcrng 20495 xrge0cmn 21386 tsmssubm 24063 amgmlem 26933 amgmwlem 49784 amgmlemALT 49785 |
| Copyright terms: Public domain | W3C validator |