MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcmn Structured version   Visualization version   GIF version

Theorem subcmn 19767
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypothesis
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subcmn ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)

Proof of Theorem subcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (Base‘𝐻) = (Base‘𝐻))
2 eqid 2729 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2729 . . . . . . 7 (0g𝐻) = (0g𝐻)
42, 3mndidcl 18676 . . . . . 6 (𝐻 ∈ Mnd → (0g𝐻) ∈ (Base‘𝐻))
5 n0i 4303 . . . . . 6 ((0g𝐻) ∈ (Base‘𝐻) → ¬ (Base‘𝐻) = ∅)
64, 5syl 17 . . . . 5 (𝐻 ∈ Mnd → ¬ (Base‘𝐻) = ∅)
7 subgabl.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
8 reldmress 17202 . . . . . . . . 9 Rel dom ↾s
98ovprc2 7427 . . . . . . . 8 𝑆 ∈ V → (𝐺s 𝑆) = ∅)
107, 9eqtrid 2776 . . . . . . 7 𝑆 ∈ V → 𝐻 = ∅)
1110fveq2d 6862 . . . . . 6 𝑆 ∈ V → (Base‘𝐻) = (Base‘∅))
12 base0 17184 . . . . . 6 ∅ = (Base‘∅)
1311, 12eqtr4di 2782 . . . . 5 𝑆 ∈ V → (Base‘𝐻) = ∅)
146, 13nsyl2 141 . . . 4 (𝐻 ∈ Mnd → 𝑆 ∈ V)
1514adantl 481 . . 3 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝑆 ∈ V)
16 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
177, 16ressplusg 17254 . . 3 (𝑆 ∈ V → (+g𝐺) = (+g𝐻))
1815, 17syl 17 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (+g𝐺) = (+g𝐻))
19 simpr 484 . 2 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ Mnd)
20 simpl 482 . . 3 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐺 ∈ CMnd)
21 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
227, 21ressbasss 17209 . . . 4 (Base‘𝐻) ⊆ (Base‘𝐺)
2322sseli 3942 . . 3 (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ (Base‘𝐺))
2422sseli 3942 . . 3 (𝑦 ∈ (Base‘𝐻) → 𝑦 ∈ (Base‘𝐺))
2521, 16cmncom 19728 . . 3 ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
2620, 23, 24, 25syl3an 1160 . 2 (((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
271, 18, 19, 26iscmnd 19724 1 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-cmn 19712
This theorem is referenced by:  submcmn  19768  unitabl  20293  subrgcrng  20484  xrge0cmn  21325  tsmssubm  24030  amgmlem  26900  amgmwlem  49791  amgmlemALT  49792
  Copyright terms: Public domain W3C validator