| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcmn | Structured version Visualization version GIF version | ||
| Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (Base‘𝐻) = (Base‘𝐻)) | |
| 2 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 3 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 4 | 2, 3 | mndidcl 18683 | . . . . . 6 ⊢ (𝐻 ∈ Mnd → (0g‘𝐻) ∈ (Base‘𝐻)) |
| 5 | n0i 4306 | . . . . . 6 ⊢ ((0g‘𝐻) ∈ (Base‘𝐻) → ¬ (Base‘𝐻) = ∅) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐻 ∈ Mnd → ¬ (Base‘𝐻) = ∅) |
| 7 | subgabl.h | . . . . . . . 8 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 8 | reldmress 17209 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
| 9 | 8 | ovprc2 7430 | . . . . . . . 8 ⊢ (¬ 𝑆 ∈ V → (𝐺 ↾s 𝑆) = ∅) |
| 10 | 7, 9 | eqtrid 2777 | . . . . . . 7 ⊢ (¬ 𝑆 ∈ V → 𝐻 = ∅) |
| 11 | 10 | fveq2d 6865 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = (Base‘∅)) |
| 12 | base0 17191 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 13 | 11, 12 | eqtr4di 2783 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = ∅) |
| 14 | 6, 13 | nsyl2 141 | . . . 4 ⊢ (𝐻 ∈ Mnd → 𝑆 ∈ V) |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝑆 ∈ V) |
| 16 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 7, 16 | ressplusg 17261 | . . 3 ⊢ (𝑆 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 18 | 15, 17 | syl 17 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (+g‘𝐺) = (+g‘𝐻)) |
| 19 | simpr 484 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ Mnd) | |
| 20 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐺 ∈ CMnd) | |
| 21 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 22 | 7, 21 | ressbasss 17216 | . . . 4 ⊢ (Base‘𝐻) ⊆ (Base‘𝐺) |
| 23 | 22 | sseli 3945 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ (Base‘𝐺)) |
| 24 | 22 | sseli 3945 | . . 3 ⊢ (𝑦 ∈ (Base‘𝐻) → 𝑦 ∈ (Base‘𝐺)) |
| 25 | 21, 16 | cmncom 19735 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 26 | 20, 23, 24, 25 | syl3an 1160 | . 2 ⊢ (((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 27 | 1, 18, 19, 26 | iscmnd 19731 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 CMndccmn 19717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-cmn 19719 |
| This theorem is referenced by: submcmn 19775 unitabl 20300 subrgcrng 20491 xrge0cmn 21332 tsmssubm 24037 amgmlem 26907 amgmwlem 49795 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |