![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subcmn | Structured version Visualization version GIF version |
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subcmn | ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2731 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (Base‘𝐻) = (Base‘𝐻)) | |
2 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
3 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
4 | 2, 3 | mndidcl 18676 | . . . . . 6 ⊢ (𝐻 ∈ Mnd → (0g‘𝐻) ∈ (Base‘𝐻)) |
5 | n0i 4334 | . . . . . 6 ⊢ ((0g‘𝐻) ∈ (Base‘𝐻) → ¬ (Base‘𝐻) = ∅) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐻 ∈ Mnd → ¬ (Base‘𝐻) = ∅) |
7 | subgabl.h | . . . . . . . 8 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
8 | reldmress 17181 | . . . . . . . . 9 ⊢ Rel dom ↾s | |
9 | 8 | ovprc2 7453 | . . . . . . . 8 ⊢ (¬ 𝑆 ∈ V → (𝐺 ↾s 𝑆) = ∅) |
10 | 7, 9 | eqtrid 2782 | . . . . . . 7 ⊢ (¬ 𝑆 ∈ V → 𝐻 = ∅) |
11 | 10 | fveq2d 6896 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = (Base‘∅)) |
12 | base0 17155 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
13 | 11, 12 | eqtr4di 2788 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (Base‘𝐻) = ∅) |
14 | 6, 13 | nsyl2 141 | . . . 4 ⊢ (𝐻 ∈ Mnd → 𝑆 ∈ V) |
15 | 14 | adantl 480 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝑆 ∈ V) |
16 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 7, 16 | ressplusg 17241 | . . 3 ⊢ (𝑆 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
18 | 15, 17 | syl 17 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → (+g‘𝐺) = (+g‘𝐻)) |
19 | simpr 483 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ Mnd) | |
20 | simpl 481 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐺 ∈ CMnd) | |
21 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
22 | 7, 21 | ressbasss 17189 | . . . 4 ⊢ (Base‘𝐻) ⊆ (Base‘𝐺) |
23 | 22 | sseli 3979 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐻) → 𝑥 ∈ (Base‘𝐺)) |
24 | 22 | sseli 3979 | . . 3 ⊢ (𝑦 ∈ (Base‘𝐻) → 𝑦 ∈ (Base‘𝐺)) |
25 | 21, 16 | cmncom 19709 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
26 | 20, 23, 24, 25 | syl3an 1158 | . 2 ⊢ (((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
27 | 1, 18, 19, 26 | iscmnd 19705 | 1 ⊢ ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4323 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 ↾s cress 17179 +gcplusg 17203 0gc0g 17391 Mndcmnd 18661 CMndccmn 19691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-cmn 19693 |
This theorem is referenced by: submcmn 19749 unitabl 20277 subrgcrng 20467 xrge0cmn 21189 tsmssubm 23869 amgmlem 26728 amgmwlem 47938 amgmlemALT 47939 |
Copyright terms: Public domain | W3C validator |