MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg2 Structured version   Visualization version   GIF version

Theorem iscyg2 19812
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyg2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyg2
StepHypRef Expression
1 iscyg.1 . . 3 𝐵 = (Base‘𝐺)
2 iscyg.2 . . 3 · = (.g𝐺)
31, 2iscyg 19809 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
4 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
54neeq1i 2989 . . . 4 (𝐸 ≠ ∅ ↔ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅)
6 rabn0 4352 . . . 4 ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)
75, 6bitri 275 . . 3 (𝐸 ≠ ∅ ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)
87anbi2i 623 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ≠ ∅) ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
93, 8bitr4i 278 1 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  c0 4296  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  cz 12529  Basecbs 17179  Grpcgrp 18865  .gcmg 18999  CycGrpccyg 19807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-cnv 5646  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519  df-ov 7390  df-cyg 19808
This theorem is referenced by:  iscygd  19817  iscygodd  19818  cyggex2  19827  cyggexb  19829  cygzn  21480
  Copyright terms: Public domain W3C validator