![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscyg2 | Structured version Visualization version GIF version |
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
Ref | Expression |
---|---|
iscyg2 | ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | 1, 2 | iscyg 19846 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
4 | iscyg3.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
5 | 4 | neeq1i 2994 | . . . 4 ⊢ (𝐸 ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅) |
6 | rabn0 4387 | . . . 4 ⊢ ({𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵) | |
7 | 5, 6 | bitri 274 | . . 3 ⊢ (𝐸 ≠ ∅ ↔ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵) |
8 | 7 | anbi2i 621 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ≠ ∅) ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
9 | 3, 8 | bitr4i 277 | 1 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 {crab 3418 ∅c0 4322 ↦ cmpt 5232 ran crn 5679 ‘cfv 6549 (class class class)co 7419 ℤcz 12591 Basecbs 17183 Grpcgrp 18898 .gcmg 19031 CycGrpccyg 19844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-cnv 5686 df-dm 5688 df-rn 5689 df-iota 6501 df-fv 6557 df-ov 7422 df-cyg 19845 |
This theorem is referenced by: iscygd 19854 iscygodd 19855 cyggex2 19864 cyggexb 19866 cygzn 21521 |
Copyright terms: Public domain | W3C validator |