MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg2 Structured version   Visualization version   GIF version

Theorem iscyg2 19480
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
Assertion
Ref Expression
iscyg2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem iscyg2
StepHypRef Expression
1 iscyg.1 . . 3 𝐵 = (Base‘𝐺)
2 iscyg.2 . . 3 · = (.g𝐺)
31, 2iscyg 19477 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
4 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
54neeq1i 3010 . . . 4 (𝐸 ≠ ∅ ↔ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅)
6 rabn0 4325 . . . 4 ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)
75, 6bitri 274 . . 3 (𝐸 ≠ ∅ ↔ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)
87anbi2i 623 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ≠ ∅) ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵))
93, 8bitr4i 277 1 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  wrex 3067  {crab 3070  c0 4262  cmpt 5162  ran crn 5591  cfv 6432  (class class class)co 7271  cz 12319  Basecbs 16910  Grpcgrp 18575  .gcmg 18698  CycGrpccyg 19475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-cnv 5598  df-dm 5600  df-rn 5601  df-iota 6390  df-fv 6440  df-ov 7274  df-cyg 19476
This theorem is referenced by:  iscygd  19485  iscygodd  19486  cyggex2  19496  cyggexb  19498  cygzn  20776
  Copyright terms: Public domain W3C validator