| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscyg2 | Structured version Visualization version GIF version | ||
| Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscyg.2 | ⊢ · = (.g‘𝐺) |
| iscyg3.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
| Ref | Expression |
|---|---|
| iscyg2 | ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | 1, 2 | iscyg 19816 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
| 4 | iscyg3.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
| 5 | 4 | neeq1i 2990 | . . . 4 ⊢ (𝐸 ≠ ∅ ↔ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅) |
| 6 | rabn0 4355 | . . . 4 ⊢ ({𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ (𝐸 ≠ ∅ ↔ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵) |
| 8 | 7 | anbi2i 623 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐸 ≠ ∅) ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
| 9 | 3, 8 | bitr4i 278 | 1 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ 𝐸 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ∅c0 4299 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ℤcz 12536 Basecbs 17186 Grpcgrp 18872 .gcmg 19006 CycGrpccyg 19814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-cnv 5649 df-dm 5651 df-rn 5652 df-iota 6467 df-fv 6522 df-ov 7393 df-cyg 19815 |
| This theorem is referenced by: iscygd 19824 iscygodd 19825 cyggex2 19834 cyggexb 19836 cygzn 21487 |
| Copyright terms: Public domain | W3C validator |