![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscyg3 | Structured version Visualization version GIF version |
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | โข ๐ต = (Baseโ๐บ) |
iscyg.2 | โข ยท = (.gโ๐บ) |
Ref | Expression |
---|---|
iscyg3 | โข (๐บ โ CycGrp โ (๐บ โ Grp โง โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | . . 3 โข ๐ต = (Baseโ๐บ) | |
2 | iscyg.2 | . . 3 โข ยท = (.gโ๐บ) | |
3 | 1, 2 | iscyg 19790 | . 2 โข (๐บ โ CycGrp โ (๐บ โ Grp โง โ๐ฅ โ ๐ต ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) = ๐ต)) |
4 | 1, 2 | mulgcl 19009 | . . . . . . . . 9 โข ((๐บ โ Grp โง ๐ โ โค โง ๐ฅ โ ๐ต) โ (๐ ยท ๐ฅ) โ ๐ต) |
5 | 4 | 3expa 1116 | . . . . . . . 8 โข (((๐บ โ Grp โง ๐ โ โค) โง ๐ฅ โ ๐ต) โ (๐ ยท ๐ฅ) โ ๐ต) |
6 | 5 | an32s 648 | . . . . . . 7 โข (((๐บ โ Grp โง ๐ฅ โ ๐ต) โง ๐ โ โค) โ (๐ ยท ๐ฅ) โ ๐ต) |
7 | 6 | fmpttd 7117 | . . . . . 6 โข ((๐บ โ Grp โง ๐ฅ โ ๐ต) โ (๐ โ โค โฆ (๐ ยท ๐ฅ)):โคโถ๐ต) |
8 | frn 6725 | . . . . . 6 โข ((๐ โ โค โฆ (๐ ยท ๐ฅ)):โคโถ๐ต โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) โ ๐ต) | |
9 | eqss 3998 | . . . . . . 7 โข (ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) = ๐ต โ (ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) โ ๐ต โง ๐ต โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)))) | |
10 | 9 | baib 534 | . . . . . 6 โข (ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) โ ๐ต โ (ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) = ๐ต โ ๐ต โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)))) |
11 | 7, 8, 10 | 3syl 18 | . . . . 5 โข ((๐บ โ Grp โง ๐ฅ โ ๐ต) โ (ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) = ๐ต โ ๐ต โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)))) |
12 | dfss3 3971 | . . . . . 6 โข (๐ต โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) โ โ๐ฆ โ ๐ต ๐ฆ โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ))) | |
13 | eqid 2730 | . . . . . . . 8 โข (๐ โ โค โฆ (๐ ยท ๐ฅ)) = (๐ โ โค โฆ (๐ ยท ๐ฅ)) | |
14 | ovex 7446 | . . . . . . . 8 โข (๐ ยท ๐ฅ) โ V | |
15 | 13, 14 | elrnmpti 5960 | . . . . . . 7 โข (๐ฆ โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) โ โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ)) |
16 | 15 | ralbii 3091 | . . . . . 6 โข (โ๐ฆ โ ๐ต ๐ฆ โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) โ โ๐ฆ โ ๐ต โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ)) |
17 | 12, 16 | bitri 274 | . . . . 5 โข (๐ต โ ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) โ โ๐ฆ โ ๐ต โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ)) |
18 | 11, 17 | bitrdi 286 | . . . 4 โข ((๐บ โ Grp โง ๐ฅ โ ๐ต) โ (ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) = ๐ต โ โ๐ฆ โ ๐ต โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ))) |
19 | 18 | rexbidva 3174 | . . 3 โข (๐บ โ Grp โ (โ๐ฅ โ ๐ต ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) = ๐ต โ โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ))) |
20 | 19 | pm5.32i 573 | . 2 โข ((๐บ โ Grp โง โ๐ฅ โ ๐ต ran (๐ โ โค โฆ (๐ ยท ๐ฅ)) = ๐ต) โ (๐บ โ Grp โง โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ))) |
21 | 3, 20 | bitri 274 | 1 โข (๐บ โ CycGrp โ (๐บ โ Grp โง โ๐ฅ โ ๐ต โ๐ฆ โ ๐ต โ๐ โ โค ๐ฆ = (๐ ยท ๐ฅ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 โง wa 394 = wceq 1539 โ wcel 2104 โwral 3059 โwrex 3068 โ wss 3949 โฆ cmpt 5232 ran crn 5678 โถwf 6540 โcfv 6544 (class class class)co 7413 โคcz 12564 Basecbs 17150 Grpcgrp 18857 .gcmg 18988 CycGrpccyg 19788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-seq 13973 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-mulg 18989 df-cyg 19789 |
This theorem is referenced by: cygabl 19802 |
Copyright terms: Public domain | W3C validator |