| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscyg3 | Structured version Visualization version GIF version | ||
| Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscyg.2 | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| iscyg3 | ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | iscyg.2 | . . 3 ⊢ · = (.g‘𝐺) | |
| 3 | 1, 2 | iscyg 19776 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵)) |
| 4 | 1, 2 | mulgcl 18988 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ 𝐵) → (𝑛 · 𝑥) ∈ 𝐵) |
| 5 | 4 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → (𝑛 · 𝑥) ∈ 𝐵) |
| 6 | 5 | an32s 652 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) ∈ 𝐵) |
| 7 | 6 | fmpttd 7053 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)):ℤ⟶𝐵) |
| 8 | frn 6663 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)):ℤ⟶𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) ⊆ 𝐵) | |
| 9 | eqss 3953 | . . . . . . 7 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) ⊆ 𝐵 ∧ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))) | |
| 10 | 9 | baib 535 | . . . . . 6 ⊢ (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) ⊆ 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))) |
| 11 | 7, 8, 10 | 3syl 18 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ 𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)))) |
| 12 | dfss3 3926 | . . . . . 6 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥))) | |
| 13 | eqid 2729 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) | |
| 14 | ovex 7386 | . . . . . . . 8 ⊢ (𝑛 · 𝑥) ∈ V | |
| 15 | 13, 14 | elrnmpti 5908 | . . . . . . 7 ⊢ (𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥)) |
| 16 | 15 | ralbii 3075 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥)) |
| 17 | 12, 16 | bitri 275 | . . . . 5 ⊢ (𝐵 ⊆ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥)) |
| 18 | 11, 17 | bitrdi 287 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥))) |
| 19 | 18 | rexbidva 3151 | . . 3 ⊢ (𝐺 ∈ Grp → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥))) |
| 20 | 19 | pm5.32i 574 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵) ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥))) |
| 21 | 3, 20 | bitri 275 | 1 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ↦ cmpt 5176 ran crn 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℤcz 12489 Basecbs 17138 Grpcgrp 18830 .gcmg 18964 CycGrpccyg 19774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-mulg 18965 df-cyg 19775 |
| This theorem is referenced by: cygabl 19788 |
| Copyright terms: Public domain | W3C validator |