| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cygctb | Structured version Visualization version GIF version | ||
| Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| cygctb | ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 3 | 1, 2 | iscyg 19786 | . . 3 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
| 5 | ovex 7374 | . . . . . 6 ⊢ (𝑛(.g‘𝐺)𝑥) ∈ V | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) | |
| 7 | 5, 6 | fnmpti 6619 | . . . . 5 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ |
| 8 | df-fo 6482 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) | |
| 9 | 7, 8 | mpbiran 709 | . . . 4 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
| 10 | omelon 9531 | . . . . . . . 8 ⊢ ω ∈ On | |
| 11 | onenon 9837 | . . . . . . . 8 ⊢ (ω ∈ On → ω ∈ dom card) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ω ∈ dom card |
| 13 | znnen 16116 | . . . . . . . . 9 ⊢ ℤ ≈ ℕ | |
| 14 | nnenom 13882 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
| 15 | 13, 14 | entri 8925 | . . . . . . . 8 ⊢ ℤ ≈ ω |
| 16 | ennum 9835 | . . . . . . . 8 ⊢ (ℤ ≈ ω → (ℤ ∈ dom card ↔ ω ∈ dom card)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (ℤ ∈ dom card ↔ ω ∈ dom card) |
| 18 | 12, 17 | mpbir 231 | . . . . . 6 ⊢ ℤ ∈ dom card |
| 19 | fodomnum 9943 | . . . . . 6 ⊢ (ℤ ∈ dom card → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) | |
| 20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) |
| 21 | domentr 8930 | . . . . . 6 ⊢ ((𝐵 ≼ ℤ ∧ ℤ ≈ ω) → 𝐵 ≼ ω) | |
| 22 | 15, 21 | mpan2 691 | . . . . 5 ⊢ (𝐵 ≼ ℤ → 𝐵 ≼ ω) |
| 23 | 20, 22 | syl6 35 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ω)) |
| 24 | 9, 23 | biimtrrid 243 | . . 3 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
| 25 | 24 | rexlimdva 3133 | . 2 ⊢ (𝐺 ∈ CycGrp → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
| 26 | 4, 25 | mpd 15 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ran crn 5612 Oncon0 6301 Fn wfn 6471 –onto→wfo 6474 ‘cfv 6476 (class class class)co 7341 ωcom 7791 ≈ cen 8861 ≼ cdom 8862 cardccrd 9823 ℕcn 12120 ℤcz 12463 Basecbs 17115 Grpcgrp 18841 .gcmg 18975 CycGrpccyg 19784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-cyg 19785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |