![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cygctb | Structured version Visualization version GIF version |
Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
cygctb | ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2724 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | iscyg 19795 | . . 3 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
5 | ovex 7435 | . . . . . 6 ⊢ (𝑛(.g‘𝐺)𝑥) ∈ V | |
6 | eqid 2724 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) | |
7 | 5, 6 | fnmpti 6684 | . . . . 5 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ |
8 | df-fo 6540 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) | |
9 | 7, 8 | mpbiran 706 | . . . 4 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
10 | omelon 9638 | . . . . . . . 8 ⊢ ω ∈ On | |
11 | onenon 9941 | . . . . . . . 8 ⊢ (ω ∈ On → ω ∈ dom card) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ω ∈ dom card |
13 | znnen 16158 | . . . . . . . . 9 ⊢ ℤ ≈ ℕ | |
14 | nnenom 13946 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
15 | 13, 14 | entri 9001 | . . . . . . . 8 ⊢ ℤ ≈ ω |
16 | ennum 9939 | . . . . . . . 8 ⊢ (ℤ ≈ ω → (ℤ ∈ dom card ↔ ω ∈ dom card)) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (ℤ ∈ dom card ↔ ω ∈ dom card) |
18 | 12, 17 | mpbir 230 | . . . . . 6 ⊢ ℤ ∈ dom card |
19 | fodomnum 10049 | . . . . . 6 ⊢ (ℤ ∈ dom card → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) |
21 | domentr 9006 | . . . . . 6 ⊢ ((𝐵 ≼ ℤ ∧ ℤ ≈ ω) → 𝐵 ≼ ω) | |
22 | 15, 21 | mpan2 688 | . . . . 5 ⊢ (𝐵 ≼ ℤ → 𝐵 ≼ ω) |
23 | 20, 22 | syl6 35 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ω)) |
24 | 9, 23 | biimtrrid 242 | . . 3 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
25 | 24 | rexlimdva 3147 | . 2 ⊢ (𝐺 ∈ CycGrp → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
26 | 4, 25 | mpd 15 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 class class class wbr 5139 ↦ cmpt 5222 dom cdm 5667 ran crn 5668 Oncon0 6355 Fn wfn 6529 –onto→wfo 6532 ‘cfv 6534 (class class class)co 7402 ωcom 7849 ≈ cen 8933 ≼ cdom 8934 cardccrd 9927 ℕcn 12211 ℤcz 12557 Basecbs 17149 Grpcgrp 18859 .gcmg 18991 CycGrpccyg 19793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-oi 9502 df-card 9931 df-acn 9934 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-cyg 19794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |