Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cygctb | Structured version Visualization version GIF version |
Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
cygctb | ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | iscyg 19479 | . . 3 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) |
4 | 3 | simprbi 497 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
5 | ovex 7308 | . . . . . 6 ⊢ (𝑛(.g‘𝐺)𝑥) ∈ V | |
6 | eqid 2738 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) | |
7 | 5, 6 | fnmpti 6576 | . . . . 5 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ |
8 | df-fo 6439 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) | |
9 | 7, 8 | mpbiran 706 | . . . 4 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
10 | omelon 9404 | . . . . . . . 8 ⊢ ω ∈ On | |
11 | onenon 9707 | . . . . . . . 8 ⊢ (ω ∈ On → ω ∈ dom card) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ω ∈ dom card |
13 | znnen 15921 | . . . . . . . . 9 ⊢ ℤ ≈ ℕ | |
14 | nnenom 13700 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
15 | 13, 14 | entri 8794 | . . . . . . . 8 ⊢ ℤ ≈ ω |
16 | ennum 9705 | . . . . . . . 8 ⊢ (ℤ ≈ ω → (ℤ ∈ dom card ↔ ω ∈ dom card)) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (ℤ ∈ dom card ↔ ω ∈ dom card) |
18 | 12, 17 | mpbir 230 | . . . . . 6 ⊢ ℤ ∈ dom card |
19 | fodomnum 9813 | . . . . . 6 ⊢ (ℤ ∈ dom card → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) |
21 | domentr 8799 | . . . . . 6 ⊢ ((𝐵 ≼ ℤ ∧ ℤ ≈ ω) → 𝐵 ≼ ω) | |
22 | 15, 21 | mpan2 688 | . . . . 5 ⊢ (𝐵 ≼ ℤ → 𝐵 ≼ ω) |
23 | 20, 22 | syl6 35 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ω)) |
24 | 9, 23 | syl5bir 242 | . . 3 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
25 | 24 | rexlimdva 3213 | . 2 ⊢ (𝐺 ∈ CycGrp → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
26 | 4, 25 | mpd 15 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 Oncon0 6266 Fn wfn 6428 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 cardccrd 9693 ℕcn 11973 ℤcz 12319 Basecbs 16912 Grpcgrp 18577 .gcmg 18700 CycGrpccyg 19477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-card 9697 df-acn 9700 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-cyg 19478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |