MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zncyg Structured version   Visualization version   GIF version

Theorem zncyg 20756
Description: The group ℤ / 𝑛 is cyclic for all 𝑛 (including 𝑛 = 0). (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
zncyg (𝑁 ∈ ℕ0𝑌 ∈ CycGrp)

Proof of Theorem zncyg
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zncyg.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20752 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
3 crngring 19795 . . . 4 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0𝑌 ∈ Ring)
5 ringgrp 19788 . . 3 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
64, 5syl 17 . 2 (𝑁 ∈ ℕ0𝑌 ∈ Grp)
7 eqid 2738 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
8 eqid 2738 . . . . 5 (1r𝑌) = (1r𝑌)
97, 8ringidcl 19807 . . . 4 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
104, 9syl 17 . . 3 (𝑁 ∈ ℕ0 → (1r𝑌) ∈ (Base‘𝑌))
11 eqid 2738 . . . . . . 7 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
12 eqid 2738 . . . . . . 7 (.g𝑌) = (.g𝑌)
1311, 12, 8zrhval2 20710 . . . . . 6 (𝑌 ∈ Ring → (ℤRHom‘𝑌) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
144, 13syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
1514rneqd 5847 . . . 4 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
161, 7, 11znzrhfo 20755 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
17 forn 6691 . . . . 5 ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → ran (ℤRHom‘𝑌) = (Base‘𝑌))
1816, 17syl 17 . . . 4 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = (Base‘𝑌))
1915, 18eqtr3d 2780 . . 3 (𝑁 ∈ ℕ0 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))) = (Base‘𝑌))
20 oveq2 7283 . . . . . . 7 (𝑥 = (1r𝑌) → (𝑛(.g𝑌)𝑥) = (𝑛(.g𝑌)(1r𝑌)))
2120mpteq2dv 5176 . . . . . 6 (𝑥 = (1r𝑌) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
2221rneqd 5847 . . . . 5 (𝑥 = (1r𝑌) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
2322eqeq1d 2740 . . . 4 (𝑥 = (1r𝑌) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))) = (Base‘𝑌)))
2423rspcev 3561 . . 3 (((1r𝑌) ∈ (Base‘𝑌) ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))) = (Base‘𝑌)) → ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌))
2510, 19, 24syl2anc 584 . 2 (𝑁 ∈ ℕ0 → ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌))
267, 12iscyg 19479 . 2 (𝑌 ∈ CycGrp ↔ (𝑌 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌)))
276, 25, 26sylanbrc 583 1 (𝑁 ∈ ℕ0𝑌 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  cmpt 5157  ran crn 5590  ontowfo 6431  cfv 6433  (class class class)co 7275  0cn0 12233  cz 12319  Basecbs 16912  Grpcgrp 18577  .gcmg 18700  CycGrpccyg 19477  1rcur 19737  Ringcrg 19783  CRingccrg 19784  ℤRHomczrh 20701  ℤ/nczn 20704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-seq 13722  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cmn 19388  df-abl 19389  df-cyg 19478  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708
This theorem is referenced by:  cygth  20779
  Copyright terms: Public domain W3C validator