Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zncyg | Structured version Visualization version GIF version |
Description: The group ℤ / 𝑛ℤ is cyclic for all 𝑛 (including 𝑛 = 0). (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
zncyg.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
Ref | Expression |
---|---|
zncyg | ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zncyg.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
2 | 1 | zncrng 20762 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) |
3 | crngring 19805 | . . . 4 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Ring) |
5 | ringgrp 19798 | . . 3 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Grp) |
7 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
8 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑌) = (1r‘𝑌) | |
9 | 7, 8 | ringidcl 19817 | . . . 4 ⊢ (𝑌 ∈ Ring → (1r‘𝑌) ∈ (Base‘𝑌)) |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1r‘𝑌) ∈ (Base‘𝑌)) |
11 | eqid 2738 | . . . . . . 7 ⊢ (ℤRHom‘𝑌) = (ℤRHom‘𝑌) | |
12 | eqid 2738 | . . . . . . 7 ⊢ (.g‘𝑌) = (.g‘𝑌) | |
13 | 11, 12, 8 | zrhval2 20720 | . . . . . 6 ⊢ (𝑌 ∈ Ring → (ℤRHom‘𝑌) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌)))) |
14 | 4, 13 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌)))) |
15 | 14 | rneqd 5840 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌)))) |
16 | 1, 7, 11 | znzrhfo 20765 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌)) |
17 | forn 6683 | . . . . 5 ⊢ ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → ran (ℤRHom‘𝑌) = (Base‘𝑌)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = (Base‘𝑌)) |
19 | 15, 18 | eqtr3d 2780 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌))) = (Base‘𝑌)) |
20 | oveq2 7275 | . . . . . . 7 ⊢ (𝑥 = (1r‘𝑌) → (𝑛(.g‘𝑌)𝑥) = (𝑛(.g‘𝑌)(1r‘𝑌))) | |
21 | 20 | mpteq2dv 5175 | . . . . . 6 ⊢ (𝑥 = (1r‘𝑌) → (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌)))) |
22 | 21 | rneqd 5840 | . . . . 5 ⊢ (𝑥 = (1r‘𝑌) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌)))) |
23 | 22 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = (1r‘𝑌) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)𝑥)) = (Base‘𝑌) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌))) = (Base‘𝑌))) |
24 | 23 | rspcev 3559 | . . 3 ⊢ (((1r‘𝑌) ∈ (Base‘𝑌) ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)(1r‘𝑌))) = (Base‘𝑌)) → ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)𝑥)) = (Base‘𝑌)) |
25 | 10, 19, 24 | syl2anc 584 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)𝑥)) = (Base‘𝑌)) |
26 | 7, 12 | iscyg 19489 | . 2 ⊢ (𝑌 ∈ CycGrp ↔ (𝑌 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑌)𝑥)) = (Base‘𝑌))) |
27 | 6, 25, 26 | sylanbrc 583 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ↦ cmpt 5156 ran crn 5585 –onto→wfo 6424 ‘cfv 6426 (class class class)co 7267 ℕ0cn0 12243 ℤcz 12329 Basecbs 16922 Grpcgrp 18587 .gcmg 18710 CycGrpccyg 19487 1rcur 19747 Ringcrg 19793 CRingccrg 19794 ℤRHomczrh 20711 ℤ/nℤczn 20714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-tpos 8029 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-ec 8487 df-qs 8491 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-seq 13732 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-0g 17162 df-imas 17229 df-qus 17230 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-grp 18590 df-minusg 18591 df-sbg 18592 df-mulg 18711 df-subg 18762 df-nsg 18763 df-eqg 18764 df-ghm 18842 df-cmn 19398 df-abl 19399 df-cyg 19488 df-mgp 19731 df-ur 19748 df-ring 19795 df-cring 19796 df-oppr 19872 df-rnghom 19969 df-subrg 20032 df-lmod 20135 df-lss 20204 df-lsp 20244 df-sra 20444 df-rgmod 20445 df-lidl 20446 df-rsp 20447 df-2idl 20513 df-cnfld 20608 df-zring 20681 df-zrh 20715 df-zn 20718 |
This theorem is referenced by: cygth 20789 |
Copyright terms: Public domain | W3C validator |