MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zncyg Structured version   Visualization version   GIF version

Theorem zncyg 20766
Description: The group ℤ / 𝑛 is cyclic for all 𝑛 (including 𝑛 = 0). (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
zncyg (𝑁 ∈ ℕ0𝑌 ∈ CycGrp)

Proof of Theorem zncyg
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zncyg.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20762 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
3 crngring 19805 . . . 4 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0𝑌 ∈ Ring)
5 ringgrp 19798 . . 3 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
64, 5syl 17 . 2 (𝑁 ∈ ℕ0𝑌 ∈ Grp)
7 eqid 2738 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
8 eqid 2738 . . . . 5 (1r𝑌) = (1r𝑌)
97, 8ringidcl 19817 . . . 4 (𝑌 ∈ Ring → (1r𝑌) ∈ (Base‘𝑌))
104, 9syl 17 . . 3 (𝑁 ∈ ℕ0 → (1r𝑌) ∈ (Base‘𝑌))
11 eqid 2738 . . . . . . 7 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
12 eqid 2738 . . . . . . 7 (.g𝑌) = (.g𝑌)
1311, 12, 8zrhval2 20720 . . . . . 6 (𝑌 ∈ Ring → (ℤRHom‘𝑌) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
144, 13syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
1514rneqd 5840 . . . 4 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
161, 7, 11znzrhfo 20765 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
17 forn 6683 . . . . 5 ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → ran (ℤRHom‘𝑌) = (Base‘𝑌))
1816, 17syl 17 . . . 4 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = (Base‘𝑌))
1915, 18eqtr3d 2780 . . 3 (𝑁 ∈ ℕ0 → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))) = (Base‘𝑌))
20 oveq2 7275 . . . . . . 7 (𝑥 = (1r𝑌) → (𝑛(.g𝑌)𝑥) = (𝑛(.g𝑌)(1r𝑌)))
2120mpteq2dv 5175 . . . . . 6 (𝑥 = (1r𝑌) → (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
2221rneqd 5840 . . . . 5 (𝑥 = (1r𝑌) → ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))))
2322eqeq1d 2740 . . . 4 (𝑥 = (1r𝑌) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))) = (Base‘𝑌)))
2423rspcev 3559 . . 3 (((1r𝑌) ∈ (Base‘𝑌) ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)(1r𝑌))) = (Base‘𝑌)) → ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌))
2510, 19, 24syl2anc 584 . 2 (𝑁 ∈ ℕ0 → ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌))
267, 12iscyg 19489 . 2 (𝑌 ∈ CycGrp ↔ (𝑌 ∈ Grp ∧ ∃𝑥 ∈ (Base‘𝑌)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑌)𝑥)) = (Base‘𝑌)))
276, 25, 26sylanbrc 583 1 (𝑁 ∈ ℕ0𝑌 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  cmpt 5156  ran crn 5585  ontowfo 6424  cfv 6426  (class class class)co 7267  0cn0 12243  cz 12329  Basecbs 16922  Grpcgrp 18587  .gcmg 18710  CycGrpccyg 19487  1rcur 19747  Ringcrg 19793  CRingccrg 19794  ℤRHomczrh 20711  ℤ/nczn 20714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-tpos 8029  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-ec 8487  df-qs 8491  df-map 8604  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-inf 9189  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-seq 13732  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-0g 17162  df-imas 17229  df-qus 17230  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-grp 18590  df-minusg 18591  df-sbg 18592  df-mulg 18711  df-subg 18762  df-nsg 18763  df-eqg 18764  df-ghm 18842  df-cmn 19398  df-abl 19399  df-cyg 19488  df-mgp 19731  df-ur 19748  df-ring 19795  df-cring 19796  df-oppr 19872  df-rnghom 19969  df-subrg 20032  df-lmod 20135  df-lss 20204  df-lsp 20244  df-sra 20444  df-rgmod 20445  df-lidl 20446  df-rsp 20447  df-2idl 20513  df-cnfld 20608  df-zring 20681  df-zrh 20715  df-zn 20718
This theorem is referenced by:  cygth  20789
  Copyright terms: Public domain W3C validator