MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggex2 Structured version   Visualization version   GIF version

Theorem cyggex2 19806
Description: The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
cyggex.o 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
cyggex2 (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))

Proof of Theorem cyggex2
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . 3 𝐵 = (Base‘𝐺)
2 eqid 2732 . . 3 (.g𝐺) = (.g𝐺)
3 eqid 2732 . . 3 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}
41, 2, 3iscyg2 19791 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅))
5 n0 4346 . . . 4 ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵})
6 ssrab2 4077 . . . . . . . . 9 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ⊆ 𝐵
7 simpr 485 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵})
86, 7sselid 3980 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → 𝑦𝐵)
9 eqid 2732 . . . . . . . . 9 (od‘𝐺) = (od‘𝐺)
101, 2, 3, 9cyggenod2 19794 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
118, 10jca 512 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
1211ex 413 . . . . . 6 (𝐺 ∈ Grp → (𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))))
13 cyggex.o . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
141, 13gexcl 19489 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐸 ∈ ℕ0)
1514adantr 481 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → 𝐸 ∈ ℕ0)
16 hashcl 14320 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1716adantl 482 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
18 0nn0 12491 . . . . . . . . . 10 0 ∈ ℕ0
1918a1i 11 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
2017, 19ifclda 4563 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
21 breq2 5152 . . . . . . . . 9 ((♯‘𝐵) = if(𝐵 ∈ Fin, (♯‘𝐵), 0) → (𝐸 ∥ (♯‘𝐵) ↔ 𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
22 breq2 5152 . . . . . . . . 9 (0 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) → (𝐸 ∥ 0 ↔ 𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
231, 13gexdvds3 19499 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
2423adantlr 713 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
2515adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ0)
26 nn0z 12587 . . . . . . . . . 10 (𝐸 ∈ ℕ0𝐸 ∈ ℤ)
27 dvds0 16219 . . . . . . . . . 10 (𝐸 ∈ ℤ → 𝐸 ∥ 0)
2825, 26, 273syl 18 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 𝐸 ∥ 0)
2921, 22, 24, 28ifbothda 4566 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → 𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0))
30 simprr 771 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
311, 13, 9gexod 19495 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((od‘𝐺)‘𝑦) ∥ 𝐸)
3231adantrr 715 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → ((od‘𝐺)‘𝑦) ∥ 𝐸)
3330, 32eqbrtrrd 5172 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∥ 𝐸)
34 dvdseq 16261 . . . . . . . 8 (((𝐸 ∈ ℕ0 ∧ if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) ∧ (𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∧ if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∥ 𝐸)) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
3515, 20, 29, 33, 34syl22anc 837 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
3635ex 413 . . . . . 6 (𝐺 ∈ Grp → ((𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
3712, 36syld 47 . . . . 5 (𝐺 ∈ Grp → (𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
3837exlimdv 1936 . . . 4 (𝐺 ∈ Grp → (∃𝑦 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
395, 38biimtrid 241 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅ → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
4039imp 407 . 2 ((𝐺 ∈ Grp ∧ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
414, 40sylbi 216 1 (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  {crab 3432  c0 4322  ifcif 4528   class class class wbr 5148  cmpt 5231  ran crn 5677  cfv 6543  (class class class)co 7411  Fincfn 8941  0cc0 11112  0cn0 12476  cz 12562  chash 14294  cdvds 16201  Basecbs 17148  Grpcgrp 18855  .gcmg 18986  odcod 19433  gExcgex 19434  CycGrpccyg 19786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-omul 8473  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-sum 15637  df-dvds 16202  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18987  df-subg 19039  df-eqg 19041  df-od 19437  df-gex 19438  df-cyg 19787
This theorem is referenced by:  cyggex  19807
  Copyright terms: Public domain W3C validator