| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cyggexb | Structured version Visualization version GIF version | ||
| Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
| cyggex.o | ⊢ 𝐸 = (gEx‘𝐺) |
| Ref | Expression |
|---|---|
| cyggexb | ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cyggex.o | . . . . 5 ⊢ 𝐸 = (gEx‘𝐺) | |
| 3 | 1, 2 | cyggex 19803 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin) → 𝐸 = (♯‘𝐵)) |
| 4 | 3 | expcom 413 | . . 3 ⊢ (𝐵 ∈ Fin → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵))) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵))) |
| 6 | simpll 766 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Abel) | |
| 7 | ablgrp 19690 | . . . . . . 7 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Grp) |
| 9 | simplr 768 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐵 ∈ Fin) | |
| 10 | 1, 2 | gexcl2 19494 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ) |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐸 ∈ ℕ) |
| 12 | eqid 2730 | . . . . . 6 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 13 | 1, 2, 12 | gexex 19758 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸) |
| 14 | 6, 11, 13 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸) |
| 15 | simplr 768 | . . . . . . 7 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → 𝐸 = (♯‘𝐵)) | |
| 16 | 15 | eqeq2d 2741 | . . . . . 6 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 𝐸 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵))) |
| 17 | eqid 2730 | . . . . . . . . . 10 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 18 | eqid 2730 | . . . . . . . . . 10 ⊢ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} = {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} | |
| 19 | 1, 17, 18, 12 | cyggenod 19789 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ↔ (𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))) |
| 20 | 8, 9, 19 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ↔ (𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))) |
| 21 | ne0i 4289 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} → {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅) | |
| 22 | 1, 17, 18 | iscyg2 19787 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) |
| 23 | 22 | baib 535 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ CycGrp ↔ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) |
| 24 | 8, 23 | syl 17 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝐺 ∈ CycGrp ↔ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) |
| 25 | 21, 24 | imbitrrid 246 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} → 𝐺 ∈ CycGrp)) |
| 26 | 20, 25 | sylbird 260 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ((𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)) → 𝐺 ∈ CycGrp)) |
| 27 | 26 | expdimp 452 | . . . . . 6 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = (♯‘𝐵) → 𝐺 ∈ CycGrp)) |
| 28 | 16, 27 | sylbid 240 | . . . . 5 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 𝐸 → 𝐺 ∈ CycGrp)) |
| 29 | 28 | rexlimdva 3131 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸 → 𝐺 ∈ CycGrp)) |
| 30 | 14, 29 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ CycGrp) |
| 31 | 30 | ex 412 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐸 = (♯‘𝐵) → 𝐺 ∈ CycGrp)) |
| 32 | 5, 31 | impbid 212 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 {crab 3393 ∅c0 4281 ↦ cmpt 5170 ran crn 5615 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 ℕcn 12117 ℤcz 12460 ♯chash 14229 Basecbs 17112 Grpcgrp 18838 .gcmg 18972 odcod 19429 gExcgex 19430 Abelcabl 19686 CycGrpccyg 19782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 df-dvds 16156 df-gcd 16398 df-prm 16575 df-pc 16741 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-eqg 19030 df-od 19433 df-gex 19434 df-cmn 19687 df-abl 19688 df-cyg 19783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |