![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggexb | Structured version Visualization version GIF version |
Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
cyggex.o | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
cyggexb | ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cyggex.o | . . . . 5 ⊢ 𝐸 = (gEx‘𝐺) | |
3 | 1, 2 | cyggex 18614 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin) → 𝐸 = (♯‘𝐵)) |
4 | 3 | expcom 403 | . . 3 ⊢ (𝐵 ∈ Fin → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵))) |
5 | 4 | adantl 474 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵))) |
6 | simpll 784 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Abel) | |
7 | ablgrp 18513 | . . . . . . 7 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
8 | 7 | ad2antrr 718 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Grp) |
9 | simplr 786 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐵 ∈ Fin) | |
10 | 1, 2 | gexcl2 18317 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ) |
11 | 8, 9, 10 | syl2anc 580 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐸 ∈ ℕ) |
12 | eqid 2799 | . . . . . 6 ⊢ (od‘𝐺) = (od‘𝐺) | |
13 | 1, 2, 12 | gexex 18571 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸) |
14 | 6, 11, 13 | syl2anc 580 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸) |
15 | simplr 786 | . . . . . . 7 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → 𝐸 = (♯‘𝐵)) | |
16 | 15 | eqeq2d 2809 | . . . . . 6 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 𝐸 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵))) |
17 | eqid 2799 | . . . . . . . . . 10 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
18 | eqid 2799 | . . . . . . . . . 10 ⊢ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} = {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} | |
19 | 1, 17, 18, 12 | cyggenod 18601 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ↔ (𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))) |
20 | 8, 9, 19 | syl2anc 580 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ↔ (𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))) |
21 | ne0i 4121 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} → {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅) | |
22 | 1, 17, 18 | iscyg2 18599 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) |
23 | 22 | baib 532 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ CycGrp ↔ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) |
24 | 8, 23 | syl 17 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝐺 ∈ CycGrp ↔ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) |
25 | 21, 24 | syl5ibr 238 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} → 𝐺 ∈ CycGrp)) |
26 | 20, 25 | sylbird 252 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ((𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)) → 𝐺 ∈ CycGrp)) |
27 | 26 | expdimp 445 | . . . . . 6 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = (♯‘𝐵) → 𝐺 ∈ CycGrp)) |
28 | 16, 27 | sylbid 232 | . . . . 5 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 𝐸 → 𝐺 ∈ CycGrp)) |
29 | 28 | rexlimdva 3212 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸 → 𝐺 ∈ CycGrp)) |
30 | 14, 29 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ CycGrp) |
31 | 30 | ex 402 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐸 = (♯‘𝐵) → 𝐺 ∈ CycGrp)) |
32 | 5, 31 | impbid 204 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∃wrex 3090 {crab 3093 ∅c0 4115 ↦ cmpt 4922 ran crn 5313 ‘cfv 6101 (class class class)co 6878 Fincfn 8195 ℕcn 11312 ℤcz 11666 ♯chash 13370 Basecbs 16184 Grpcgrp 17738 .gcmg 17856 odcod 18257 gExcgex 18258 Abelcabl 18509 CycGrpccyg 18594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-disj 4812 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-ec 7984 df-qs 7988 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-fz 12581 df-fzo 12721 df-fl 12848 df-mod 12924 df-seq 13056 df-exp 13115 df-fac 13314 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-sum 14758 df-dvds 15320 df-gcd 15552 df-prm 15720 df-pc 15875 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-eqg 17906 df-od 18261 df-gex 18262 df-cmn 18510 df-abl 18511 df-cyg 18595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |