Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggexb Structured version   Visualization version   GIF version

Theorem cyggexb 19011
 Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
cyggex.o 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
cyggexb ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵)))

Proof of Theorem cyggexb
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . . 5 𝐵 = (Base‘𝐺)
2 cyggex.o . . . . 5 𝐸 = (gEx‘𝐺)
31, 2cyggex 19010 . . . 4 ((𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin) → 𝐸 = (♯‘𝐵))
43expcom 416 . . 3 (𝐵 ∈ Fin → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵)))
54adantl 484 . 2 ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵)))
6 simpll 765 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Abel)
7 ablgrp 18903 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
87ad2antrr 724 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Grp)
9 simplr 767 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐵 ∈ Fin)
101, 2gexcl2 18706 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ)
118, 9, 10syl2anc 586 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐸 ∈ ℕ)
12 eqid 2819 . . . . . 6 (od‘𝐺) = (od‘𝐺)
131, 2, 12gexex 18965 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥𝐵 ((od‘𝐺)‘𝑥) = 𝐸)
146, 11, 13syl2anc 586 . . . 4 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ∃𝑥𝐵 ((od‘𝐺)‘𝑥) = 𝐸)
15 simplr 767 . . . . . . 7 ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥𝐵) → 𝐸 = (♯‘𝐵))
1615eqeq2d 2830 . . . . . 6 ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥𝐵) → (((od‘𝐺)‘𝑥) = 𝐸 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))
17 eqid 2819 . . . . . . . . . 10 (.g𝐺) = (.g𝐺)
18 eqid 2819 . . . . . . . . . 10 {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} = {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵}
191, 17, 18, 12cyggenod 18995 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑥 ∈ {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} ↔ (𝑥𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵))))
208, 9, 19syl2anc 586 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} ↔ (𝑥𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵))))
21 ne0i 4298 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} → {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} ≠ ∅)
221, 17, 18iscyg2 18993 . . . . . . . . . . 11 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} ≠ ∅))
2322baib 538 . . . . . . . . . 10 (𝐺 ∈ Grp → (𝐺 ∈ CycGrp ↔ {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} ≠ ∅))
248, 23syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝐺 ∈ CycGrp ↔ {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} ≠ ∅))
2521, 24syl5ibr 248 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑦)) = 𝐵} → 𝐺 ∈ CycGrp))
2620, 25sylbird 262 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ((𝑥𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)) → 𝐺 ∈ CycGrp))
2726expdimp 455 . . . . . 6 ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥𝐵) → (((od‘𝐺)‘𝑥) = (♯‘𝐵) → 𝐺 ∈ CycGrp))
2816, 27sylbid 242 . . . . 5 ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥𝐵) → (((od‘𝐺)‘𝑥) = 𝐸𝐺 ∈ CycGrp))
2928rexlimdva 3282 . . . 4 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (∃𝑥𝐵 ((od‘𝐺)‘𝑥) = 𝐸𝐺 ∈ CycGrp))
3014, 29mpd 15 . . 3 (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ CycGrp)
3130ex 415 . 2 ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐸 = (♯‘𝐵) → 𝐺 ∈ CycGrp))
325, 31impbid 214 1 ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  ∃wrex 3137  {crab 3140  ∅c0 4289   ↦ cmpt 5137  ran crn 5549  ‘cfv 6348  (class class class)co 7148  Fincfn 8501  ℕcn 11630  ℤcz 11973  ♯chash 13682  Basecbs 16475  Grpcgrp 18095  .gcmg 18216  odcod 18644  gExcgex 18645  Abelcabl 18899  CycGrpccyg 18988 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-omul 8099  df-er 8281  df-ec 8283  df-qs 8287  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-eqg 18270  df-od 18648  df-gex 18649  df-cmn 18900  df-abl 18901  df-cyg 18989 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator