|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cyggexb | Structured version Visualization version GIF version | ||
| Description: A finite abelian group is cyclic iff the exponent equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) | 
| cyggex.o | ⊢ 𝐸 = (gEx‘𝐺) | 
| Ref | Expression | 
|---|---|
| cyggexb | ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cygctb.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | cyggex.o | . . . . 5 ⊢ 𝐸 = (gEx‘𝐺) | |
| 3 | 1, 2 | cyggex 19917 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin) → 𝐸 = (♯‘𝐵)) | 
| 4 | 3 | expcom 413 | . . 3 ⊢ (𝐵 ∈ Fin → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵))) | 
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp → 𝐸 = (♯‘𝐵))) | 
| 6 | simpll 766 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Abel) | |
| 7 | ablgrp 19804 | . . . . . . 7 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ Grp) | 
| 9 | simplr 768 | . . . . . 6 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐵 ∈ Fin) | |
| 10 | 1, 2 | gexcl2 19608 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ) | 
| 11 | 8, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐸 ∈ ℕ) | 
| 12 | eqid 2736 | . . . . . 6 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 13 | 1, 2, 12 | gexex 19872 | . . . . 5 ⊢ ((𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸) | 
| 14 | 6, 11, 13 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸) | 
| 15 | simplr 768 | . . . . . . 7 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → 𝐸 = (♯‘𝐵)) | |
| 16 | 15 | eqeq2d 2747 | . . . . . 6 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 𝐸 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵))) | 
| 17 | eqid 2736 | . . . . . . . . . 10 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 18 | eqid 2736 | . . . . . . . . . 10 ⊢ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} = {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} | |
| 19 | 1, 17, 18, 12 | cyggenod 19903 | . . . . . . . . 9 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ↔ (𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))) | 
| 20 | 8, 9, 19 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ↔ (𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))) | 
| 21 | ne0i 4340 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} → {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅) | |
| 22 | 1, 17, 18 | iscyg2 19901 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) | 
| 23 | 22 | baib 535 | . . . . . . . . . 10 ⊢ (𝐺 ∈ Grp → (𝐺 ∈ CycGrp ↔ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) | 
| 24 | 8, 23 | syl 17 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝐺 ∈ CycGrp ↔ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} ≠ ∅)) | 
| 25 | 21, 24 | imbitrrid 246 | . . . . . . . 8 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (𝑥 ∈ {𝑦 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑦)) = 𝐵} → 𝐺 ∈ CycGrp)) | 
| 26 | 20, 25 | sylbird 260 | . . . . . . 7 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → ((𝑥 ∈ 𝐵 ∧ ((od‘𝐺)‘𝑥) = (♯‘𝐵)) → 𝐺 ∈ CycGrp)) | 
| 27 | 26 | expdimp 452 | . . . . . 6 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = (♯‘𝐵) → 𝐺 ∈ CycGrp)) | 
| 28 | 16, 27 | sylbid 240 | . . . . 5 ⊢ ((((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 𝐸 → 𝐺 ∈ CycGrp)) | 
| 29 | 28 | rexlimdva 3154 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → (∃𝑥 ∈ 𝐵 ((od‘𝐺)‘𝑥) = 𝐸 → 𝐺 ∈ CycGrp)) | 
| 30 | 14, 29 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) ∧ 𝐸 = (♯‘𝐵)) → 𝐺 ∈ CycGrp) | 
| 31 | 30 | ex 412 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐸 = (♯‘𝐵) → 𝐺 ∈ CycGrp)) | 
| 32 | 5, 31 | impbid 212 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝐵 ∈ Fin) → (𝐺 ∈ CycGrp ↔ 𝐸 = (♯‘𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 {crab 3435 ∅c0 4332 ↦ cmpt 5224 ran crn 5685 ‘cfv 6560 (class class class)co 7432 Fincfn 8986 ℕcn 12267 ℤcz 12615 ♯chash 14370 Basecbs 17248 Grpcgrp 18952 .gcmg 19086 odcod 19543 gExcgex 19544 Abelcabl 19800 CycGrpccyg 19896 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-er 8746 df-ec 8748 df-qs 8752 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-acn 9983 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-fac 14314 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-dvds 16292 df-gcd 16533 df-prm 16710 df-pc 16876 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-eqg 19144 df-od 19547 df-gex 19548 df-cmn 19801 df-abl 19802 df-cyg 19897 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |