![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscygodd | Structured version Visualization version GIF version |
Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
iscygodd.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscygodd.o | ⊢ 𝑂 = (od‘𝐺) |
iscygodd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
iscygodd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
iscygodd.5 | ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) |
Ref | Expression |
---|---|
iscygodd | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscygodd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | iscygodd.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | iscygodd.5 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) | |
4 | iscygodd.1 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
5 | iscygodd.o | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
6 | 4, 5 | odcl 19453 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑂‘𝑋) ∈ ℕ0) |
7 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘𝑋) ∈ ℕ0) |
8 | 3, 7 | eqeltrrd 2828 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
9 | 4 | fvexi 6898 | . . . . . . 7 ⊢ 𝐵 ∈ V |
10 | hashclb 14320 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0) |
12 | 8, 11 | sylibr 233 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) |
13 | eqid 2726 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
14 | eqid 2726 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} | |
15 | 4, 13, 14, 5 | cyggenod 19801 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
16 | 1, 12, 15 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
17 | 2, 3, 16 | mpbir2and 710 | . . 3 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵}) |
18 | 17 | ne0d 4330 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅) |
19 | 4, 13, 14 | iscyg2 19799 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅)) |
20 | 1, 18, 19 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 {crab 3426 Vcvv 3468 ∅c0 4317 ↦ cmpt 5224 ran crn 5670 ‘cfv 6536 (class class class)co 7404 Fincfn 8938 ℕ0cn0 12473 ℤcz 12559 ♯chash 14292 Basecbs 17150 Grpcgrp 18860 .gcmg 18992 odcod 19441 CycGrpccyg 19794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-omul 8469 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14030 df-hash 14293 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-dvds 16202 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-sbg 18865 df-mulg 18993 df-od 19445 df-cyg 19795 |
This theorem is referenced by: prmcyg 19811 lt6abl 19812 |
Copyright terms: Public domain | W3C validator |