![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscygodd | Structured version Visualization version GIF version |
Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
iscygodd.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscygodd.o | ⊢ 𝑂 = (od‘𝐺) |
iscygodd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
iscygodd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
iscygodd.5 | ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) |
Ref | Expression |
---|---|
iscygodd | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscygodd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | iscygodd.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | iscygodd.5 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) | |
4 | iscygodd.1 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
5 | iscygodd.o | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
6 | 4, 5 | odcl 19575 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑂‘𝑋) ∈ ℕ0) |
7 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘𝑋) ∈ ℕ0) |
8 | 3, 7 | eqeltrrd 2841 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
9 | 4 | fvexi 6925 | . . . . . . 7 ⊢ 𝐵 ∈ V |
10 | hashclb 14400 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0) |
12 | 8, 11 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) |
13 | eqid 2736 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
14 | eqid 2736 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} | |
15 | 4, 13, 14, 5 | cyggenod 19923 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
16 | 1, 12, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
17 | 2, 3, 16 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵}) |
18 | 17 | ne0d 4349 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅) |
19 | 4, 13, 14 | iscyg2 19921 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅)) |
20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 {crab 3434 Vcvv 3479 ∅c0 4340 ↦ cmpt 5232 ran crn 5691 ‘cfv 6566 (class class class)co 7435 Fincfn 8990 ℕ0cn0 12530 ℤcz 12617 ♯chash 14372 Basecbs 17251 Grpcgrp 18970 .gcmg 19104 odcod 19563 CycGrpccyg 19916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-oadd 8515 df-omul 8516 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-acn 9986 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-fz 13551 df-fl 13835 df-mod 13913 df-seq 14046 df-exp 14106 df-hash 14373 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-dvds 16294 df-0g 17494 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18973 df-minusg 18974 df-sbg 18975 df-mulg 19105 df-od 19567 df-cyg 19917 |
This theorem is referenced by: prmcyg 19933 lt6abl 19934 |
Copyright terms: Public domain | W3C validator |