| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscygodd | Structured version Visualization version GIF version | ||
| Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscygodd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscygodd.o | ⊢ 𝑂 = (od‘𝐺) |
| iscygodd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| iscygodd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| iscygodd.5 | ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) |
| Ref | Expression |
|---|---|
| iscygodd | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscygodd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | iscygodd.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | iscygodd.5 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) | |
| 4 | iscygodd.1 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | iscygodd.o | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
| 6 | 4, 5 | odcl 19441 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑂‘𝑋) ∈ ℕ0) |
| 7 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘𝑋) ∈ ℕ0) |
| 8 | 3, 7 | eqeltrrd 2830 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 9 | 4 | fvexi 6831 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 10 | hashclb 14257 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0) |
| 12 | 8, 11 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 13 | eqid 2730 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 14 | eqid 2730 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} | |
| 15 | 4, 13, 14, 5 | cyggenod 19789 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
| 16 | 1, 12, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
| 17 | 2, 3, 16 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵}) |
| 18 | 17 | ne0d 4290 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅) |
| 19 | 4, 13, 14 | iscyg2 19787 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅)) |
| 20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 {crab 3393 Vcvv 3434 ∅c0 4281 ↦ cmpt 5170 ran crn 5615 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 ℕ0cn0 12373 ℤcz 12460 ♯chash 14229 Basecbs 17112 Grpcgrp 18838 .gcmg 18972 odcod 19429 CycGrpccyg 19782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fz 13400 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-dvds 16156 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-od 19433 df-cyg 19783 |
| This theorem is referenced by: prmcyg 19799 lt6abl 19800 |
| Copyright terms: Public domain | W3C validator |