MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscygodd Structured version   Visualization version   GIF version

Theorem iscygodd 19575
Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
iscygodd.1 𝐵 = (Base‘𝐺)
iscygodd.o 𝑂 = (od‘𝐺)
iscygodd.3 (𝜑𝐺 ∈ Grp)
iscygodd.4 (𝜑𝑋𝐵)
iscygodd.5 (𝜑 → (𝑂𝑋) = (♯‘𝐵))
Assertion
Ref Expression
iscygodd (𝜑𝐺 ∈ CycGrp)

Proof of Theorem iscygodd
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscygodd.3 . 2 (𝜑𝐺 ∈ Grp)
2 iscygodd.4 . . . 4 (𝜑𝑋𝐵)
3 iscygodd.5 . . . 4 (𝜑 → (𝑂𝑋) = (♯‘𝐵))
4 iscygodd.1 . . . . . . . . 9 𝐵 = (Base‘𝐺)
5 iscygodd.o . . . . . . . . 9 𝑂 = (od‘𝐺)
64, 5odcl 19232 . . . . . . . 8 (𝑋𝐵 → (𝑂𝑋) ∈ ℕ0)
72, 6syl 17 . . . . . . 7 (𝜑 → (𝑂𝑋) ∈ ℕ0)
83, 7eqeltrrd 2838 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ0)
94fvexi 6833 . . . . . . 7 𝐵 ∈ V
10 hashclb 14165 . . . . . . 7 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
119, 10ax-mp 5 . . . . . 6 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
128, 11sylibr 233 . . . . 5 (𝜑𝐵 ∈ Fin)
13 eqid 2736 . . . . . 6 (.g𝐺) = (.g𝐺)
14 eqid 2736 . . . . . 6 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}
154, 13, 14, 5cyggenod 19571 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
161, 12, 15syl2anc 584 . . . 4 (𝜑 → (𝑋 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
172, 3, 16mpbir2and 710 . . 3 (𝜑𝑋 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵})
1817ne0d 4281 . 2 (𝜑 → {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅)
194, 13, 14iscyg2 19569 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅))
201, 18, 19sylanbrc 583 1 (𝜑𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  {crab 3403  Vcvv 3441  c0 4268  cmpt 5172  ran crn 5615  cfv 6473  (class class class)co 7329  Fincfn 8796  0cn0 12326  cz 12412  chash 14137  Basecbs 17001  Grpcgrp 18665  .gcmg 18788  odcod 19220  CycGrpccyg 19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-oadd 8363  df-omul 8364  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-acn 9791  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-n0 12327  df-z 12413  df-uz 12676  df-rp 12824  df-fz 13333  df-fl 13605  df-mod 13683  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-dvds 16055  df-0g 17241  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-grp 18668  df-minusg 18669  df-sbg 18670  df-mulg 18789  df-od 19224  df-cyg 19565
This theorem is referenced by:  prmcyg  19582  lt6abl  19583
  Copyright terms: Public domain W3C validator