![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscygodd | Structured version Visualization version GIF version |
Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
iscygodd.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscygodd.o | ⊢ 𝑂 = (od‘𝐺) |
iscygodd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
iscygodd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
iscygodd.5 | ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) |
Ref | Expression |
---|---|
iscygodd | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscygodd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | iscygodd.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | iscygodd.5 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) | |
4 | iscygodd.1 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
5 | iscygodd.o | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
6 | 4, 5 | odcl 19580 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑂‘𝑋) ∈ ℕ0) |
7 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘𝑋) ∈ ℕ0) |
8 | 3, 7 | eqeltrrd 2845 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
9 | 4 | fvexi 6936 | . . . . . . 7 ⊢ 𝐵 ∈ V |
10 | hashclb 14409 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0) |
12 | 8, 11 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) |
13 | eqid 2740 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
14 | eqid 2740 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} | |
15 | 4, 13, 14, 5 | cyggenod 19928 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
16 | 1, 12, 15 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
17 | 2, 3, 16 | mpbir2and 712 | . . 3 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵}) |
18 | 17 | ne0d 4365 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅) |
19 | 4, 13, 14 | iscyg2 19926 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅)) |
20 | 1, 18, 19 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 ran crn 5701 ‘cfv 6575 (class class class)co 7450 Fincfn 9005 ℕ0cn0 12555 ℤcz 12641 ♯chash 14381 Basecbs 17260 Grpcgrp 18975 .gcmg 19109 odcod 19568 CycGrpccyg 19921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-oadd 8528 df-omul 8529 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-sup 9513 df-inf 9514 df-oi 9581 df-card 10010 df-acn 10013 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-fz 13570 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 df-hash 14382 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-dvds 16305 df-0g 17503 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-grp 18978 df-minusg 18979 df-sbg 18980 df-mulg 19110 df-od 19572 df-cyg 19922 |
This theorem is referenced by: prmcyg 19938 lt6abl 19939 |
Copyright terms: Public domain | W3C validator |