| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscygodd | Structured version Visualization version GIF version | ||
| Description: Show that a group with an element the same order as the group is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| iscygodd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| iscygodd.o | ⊢ 𝑂 = (od‘𝐺) |
| iscygodd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| iscygodd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| iscygodd.5 | ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) |
| Ref | Expression |
|---|---|
| iscygodd | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscygodd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | iscygodd.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | iscygodd.5 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = (♯‘𝐵)) | |
| 4 | iscygodd.1 | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | iscygodd.o | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
| 6 | 4, 5 | odcl 19458 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑂‘𝑋) ∈ ℕ0) |
| 7 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘𝑋) ∈ ℕ0) |
| 8 | 3, 7 | eqeltrrd 2834 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 9 | 4 | fvexi 6845 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 10 | hashclb 14275 | . . . . . . 7 ⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0) |
| 12 | 8, 11 | sylibr 234 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 13 | eqid 2733 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 14 | eqid 2733 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} | |
| 15 | 4, 13, 14, 5 | cyggenod 19806 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
| 16 | 1, 12, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ (𝑂‘𝑋) = (♯‘𝐵)))) |
| 17 | 2, 3, 16 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵}) |
| 18 | 17 | ne0d 4293 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅) |
| 19 | 4, 13, 14 | iscyg2 19804 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵} ≠ ∅)) |
| 20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 {crab 3397 Vcvv 3438 ∅c0 4284 ↦ cmpt 5176 ran crn 5622 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 ℕ0cn0 12391 ℤcz 12478 ♯chash 14247 Basecbs 17130 Grpcgrp 18856 .gcmg 18990 odcod 19446 CycGrpccyg 19799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-acn 9845 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-fz 13418 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-dvds 16174 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-od 19450 df-cyg 19800 |
| This theorem is referenced by: prmcyg 19816 lt6abl 19817 |
| Copyright terms: Public domain | W3C validator |