MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggeninv Structured version   Visualization version   GIF version

Theorem cyggeninv 19797
Description: The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggeninv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
cyggeninv ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑁,𝑥   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem cyggeninv
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscyg.1 . . . . 5 𝐵 = (Base‘𝐺)
2 iscyg.2 . . . . 5 · = (.g𝐺)
3 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen2 19795 . . . 4 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
54simprbda 498 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → 𝑋𝐵)
6 cyggeninv.n . . . 4 𝑁 = (invg𝐺)
71, 6grpinvcl 18901 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
85, 7syldan 591 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐵)
94simplbda 499 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
10 oveq1 7376 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · 𝑋) = (𝑚 · 𝑋))
1110eqeq2d 2740 . . . . . 6 (𝑛 = 𝑚 → (𝑦 = (𝑛 · 𝑋) ↔ 𝑦 = (𝑚 · 𝑋)))
1211cbvrexvw 3214 . . . . 5 (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋))
13 znegcl 12544 . . . . . . . . 9 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
1413adantl 481 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
15 simpr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
1615zcnd 12615 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
1716negnegd 11500 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → --𝑚 = 𝑚)
1817oveq1d 7384 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (𝑚 · 𝑋))
19 simplll 774 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
205ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑋𝐵)
211, 2, 6mulgneg2 19022 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ -𝑚 ∈ ℤ ∧ 𝑋𝐵) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2219, 14, 20, 21syl3anc 1373 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2318, 22eqtr3d 2766 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
24 oveq1 7376 . . . . . . . . 9 (𝑛 = -𝑚 → (𝑛 · (𝑁𝑋)) = (-𝑚 · (𝑁𝑋)))
2524rspceeqv 3608 . . . . . . . 8 ((-𝑚 ∈ ℤ ∧ (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋))) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
2614, 23, 25syl2anc 584 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
27 eqeq1 2733 . . . . . . . 8 (𝑦 = (𝑚 · 𝑋) → (𝑦 = (𝑛 · (𝑁𝑋)) ↔ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2827rexbidv 3157 . . . . . . 7 (𝑦 = (𝑚 · 𝑋) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)) ↔ ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2926, 28syl5ibrcom 247 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3029rexlimdva 3134 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3112, 30biimtrid 242 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3231ralimdva 3145 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
339, 32mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))
341, 2, 3iscyggen2 19795 . . 3 (𝐺 ∈ Grp → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
3534adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
368, 33, 35mpbir2and 713 1 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  -cneg 11382  cz 12505  Basecbs 17155  Grpcgrp 18847  invgcminusg 18848  .gcmg 18981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-mulg 18982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator