MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggeninv Structured version   Visualization version   GIF version

Theorem cyggeninv 19820
Description: The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggeninv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
cyggeninv ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑁,𝑥   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem cyggeninv
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscyg.1 . . . . 5 𝐵 = (Base‘𝐺)
2 iscyg.2 . . . . 5 · = (.g𝐺)
3 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen2 19818 . . . 4 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
54simprbda 498 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → 𝑋𝐵)
6 cyggeninv.n . . . 4 𝑁 = (invg𝐺)
71, 6grpinvcl 18926 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
85, 7syldan 591 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐵)
94simplbda 499 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
10 oveq1 7397 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · 𝑋) = (𝑚 · 𝑋))
1110eqeq2d 2741 . . . . . 6 (𝑛 = 𝑚 → (𝑦 = (𝑛 · 𝑋) ↔ 𝑦 = (𝑚 · 𝑋)))
1211cbvrexvw 3217 . . . . 5 (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋))
13 znegcl 12575 . . . . . . . . 9 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
1413adantl 481 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
15 simpr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
1615zcnd 12646 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
1716negnegd 11531 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → --𝑚 = 𝑚)
1817oveq1d 7405 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (𝑚 · 𝑋))
19 simplll 774 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
205ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑋𝐵)
211, 2, 6mulgneg2 19047 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ -𝑚 ∈ ℤ ∧ 𝑋𝐵) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2219, 14, 20, 21syl3anc 1373 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2318, 22eqtr3d 2767 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
24 oveq1 7397 . . . . . . . . 9 (𝑛 = -𝑚 → (𝑛 · (𝑁𝑋)) = (-𝑚 · (𝑁𝑋)))
2524rspceeqv 3614 . . . . . . . 8 ((-𝑚 ∈ ℤ ∧ (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋))) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
2614, 23, 25syl2anc 584 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
27 eqeq1 2734 . . . . . . . 8 (𝑦 = (𝑚 · 𝑋) → (𝑦 = (𝑛 · (𝑁𝑋)) ↔ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2827rexbidv 3158 . . . . . . 7 (𝑦 = (𝑚 · 𝑋) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)) ↔ ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2926, 28syl5ibrcom 247 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3029rexlimdva 3135 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3112, 30biimtrid 242 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3231ralimdva 3146 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
339, 32mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))
341, 2, 3iscyggen2 19818 . . 3 (𝐺 ∈ Grp → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
3534adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
368, 33, 35mpbir2and 713 1 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  -cneg 11413  cz 12536  Basecbs 17186  Grpcgrp 18872  invgcminusg 18873  .gcmg 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mulg 19007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator