MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggeninv Structured version   Visualization version   GIF version

Theorem cyggeninv 19398
Description: The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggeninv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
cyggeninv ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑁,𝑥   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem cyggeninv
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscyg.1 . . . . 5 𝐵 = (Base‘𝐺)
2 iscyg.2 . . . . 5 · = (.g𝐺)
3 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen2 19396 . . . 4 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
54simprbda 498 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → 𝑋𝐵)
6 cyggeninv.n . . . 4 𝑁 = (invg𝐺)
71, 6grpinvcl 18542 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
85, 7syldan 590 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐵)
94simplbda 499 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
10 oveq1 7262 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · 𝑋) = (𝑚 · 𝑋))
1110eqeq2d 2749 . . . . . 6 (𝑛 = 𝑚 → (𝑦 = (𝑛 · 𝑋) ↔ 𝑦 = (𝑚 · 𝑋)))
1211cbvrexvw 3373 . . . . 5 (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋))
13 znegcl 12285 . . . . . . . . 9 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
1413adantl 481 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
15 simpr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
1615zcnd 12356 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
1716negnegd 11253 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → --𝑚 = 𝑚)
1817oveq1d 7270 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (𝑚 · 𝑋))
19 simplll 771 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
205ad2antrr 722 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑋𝐵)
211, 2, 6mulgneg2 18652 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ -𝑚 ∈ ℤ ∧ 𝑋𝐵) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2219, 14, 20, 21syl3anc 1369 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2318, 22eqtr3d 2780 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
24 oveq1 7262 . . . . . . . . 9 (𝑛 = -𝑚 → (𝑛 · (𝑁𝑋)) = (-𝑚 · (𝑁𝑋)))
2524rspceeqv 3567 . . . . . . . 8 ((-𝑚 ∈ ℤ ∧ (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋))) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
2614, 23, 25syl2anc 583 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
27 eqeq1 2742 . . . . . . . 8 (𝑦 = (𝑚 · 𝑋) → (𝑦 = (𝑛 · (𝑁𝑋)) ↔ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2827rexbidv 3225 . . . . . . 7 (𝑦 = (𝑚 · 𝑋) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)) ↔ ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2926, 28syl5ibrcom 246 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3029rexlimdva 3212 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3112, 30syl5bi 241 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3231ralimdva 3102 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
339, 32mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))
341, 2, 3iscyggen2 19396 . . 3 (𝐺 ∈ Grp → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
3534adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
368, 33, 35mpbir2and 709 1 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  -cneg 11136  cz 12249  Basecbs 16840  Grpcgrp 18492  invgcminusg 18493  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator