![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscygd | Structured version Visualization version GIF version |
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
iscyg.1 | ⊢ 𝐵 = (Base‘𝐺) |
iscyg.2 | ⊢ · = (.g‘𝐺) |
iscygd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
iscygd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
iscygd.5 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
Ref | Expression |
---|---|
iscygd | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscygd.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | iscygd.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | iscygd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) | |
4 | 3 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)) |
5 | iscyg.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | iscyg.2 | . . . . . 6 ⊢ · = (.g‘𝐺) | |
7 | eqid 2736 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
8 | 5, 6, 7 | iscyggen2 19920 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋)))) |
10 | 2, 4, 9 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}) |
11 | 10 | ne0d 4349 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅) |
12 | 5, 6, 7 | iscyg2 19921 | . 2 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ≠ ∅)) |
13 | 1, 11, 12 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3434 ∅c0 4340 ↦ cmpt 5232 ran crn 5691 ‘cfv 6566 (class class class)co 7435 ℤcz 12617 Basecbs 17251 Grpcgrp 18970 .gcmg 19104 CycGrpccyg 19916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-n0 12531 df-z 12618 df-uz 12883 df-fz 13551 df-seq 14046 df-0g 17494 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18973 df-minusg 18974 df-mulg 19105 df-cyg 19917 |
This theorem is referenced by: 0cyg 19932 ghmcyg 19935 cycsubgcyg 19940 ablsimpgcygd 20147 zringcyg 21504 frgpcyg 21616 |
Copyright terms: Public domain | W3C validator |