MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ener Structured version   Visualization version   GIF version

Theorem ener 9040
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
ener ≈ Er V

Proof of Theorem ener
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 8989 . 2 Rel ≈
2 bren 8994 . . 3 (𝑥𝑦 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
3 vex 3482 . . . . 5 𝑦 ∈ V
4 vex 3482 . . . . 5 𝑥 ∈ V
5 f1ocnv 6861 . . . . 5 (𝑓:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑥)
6 f1oen2g 9008 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ 𝑓:𝑦1-1-onto𝑥) → 𝑦𝑥)
73, 4, 5, 6mp3an12i 1464 . . . 4 (𝑓:𝑥1-1-onto𝑦𝑦𝑥)
87exlimiv 1928 . . 3 (∃𝑓 𝑓:𝑥1-1-onto𝑦𝑦𝑥)
92, 8sylbi 217 . 2 (𝑥𝑦𝑦𝑥)
10 bren 8994 . . 3 (𝑥𝑦 ↔ ∃𝑔 𝑔:𝑥1-1-onto𝑦)
11 bren 8994 . . 3 (𝑦𝑧 ↔ ∃𝑓 𝑓:𝑦1-1-onto𝑧)
12 exdistrv 1953 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) ↔ (∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧))
13 vex 3482 . . . . . 6 𝑧 ∈ V
14 f1oco 6872 . . . . . . 7 ((𝑓:𝑦1-1-onto𝑧𝑔:𝑥1-1-onto𝑦) → (𝑓𝑔):𝑥1-1-onto𝑧)
1514ancoms 458 . . . . . 6 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → (𝑓𝑔):𝑥1-1-onto𝑧)
16 f1oen2g 9008 . . . . . 6 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓𝑔):𝑥1-1-onto𝑧) → 𝑥𝑧)
174, 13, 15, 16mp3an12i 1464 . . . . 5 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1817exlimivv 1930 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1912, 18sylbir 235 . . 3 ((∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2010, 11, 19syl2anb 598 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
214enref 9024 . . 3 𝑥𝑥
224, 212th 264 . 2 (𝑥 ∈ V ↔ 𝑥𝑥)
231, 9, 20, 22iseri 8771 1 ≈ Er V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1776  wcel 2106  Vcvv 3478   class class class wbr 5148  ccnv 5688  ccom 5693  1-1-ontowf1o 6562   Er wer 8741  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-er 8744  df-en 8985
This theorem is referenced by:  ensymb  9041  entr  9045
  Copyright terms: Public domain W3C validator