| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ener | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| ener | ⊢ ≈ Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8991 | . 2 ⊢ Rel ≈ | |
| 2 | bren 8996 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
| 3 | vex 3483 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | vex 3483 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | f1ocnv 6859 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → ◡𝑓:𝑦–1-1-onto→𝑥) | |
| 6 | f1oen2g 9010 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡𝑓:𝑦–1-1-onto→𝑥) → 𝑦 ≈ 𝑥) | |
| 7 | 3, 4, 5, 6 | mp3an12i 1466 | . . . 4 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
| 8 | 7 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
| 9 | 2, 8 | sylbi 217 | . 2 ⊢ (𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥) |
| 10 | bren 8996 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1-onto→𝑦) | |
| 11 | bren 8996 | . . 3 ⊢ (𝑦 ≈ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) | |
| 12 | exdistrv 1954 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧)) | |
| 13 | vex 3483 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 14 | f1oco 6870 | . . . . . . 7 ⊢ ((𝑓:𝑦–1-1-onto→𝑧 ∧ 𝑔:𝑥–1-1-onto→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) | |
| 15 | 14 | ancoms 458 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
| 16 | f1oen2g 9010 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) | |
| 17 | 4, 13, 15, 16 | mp3an12i 1466 | . . . . 5 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 18 | 17 | exlimivv 1931 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 19 | 12, 18 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 20 | 10, 11, 19 | syl2anb 598 | . 2 ⊢ ((𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧) → 𝑥 ≈ 𝑧) |
| 21 | 4 | enref 9026 | . . 3 ⊢ 𝑥 ≈ 𝑥 |
| 22 | 4, 21 | 2th 264 | . 2 ⊢ (𝑥 ∈ V ↔ 𝑥 ≈ 𝑥) |
| 23 | 1, 9, 20, 22 | iseri 8773 | 1 ⊢ ≈ Er V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 ◡ccnv 5683 ∘ ccom 5688 –1-1-onto→wf1o 6559 Er wer 8743 ≈ cen 8983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-er 8746 df-en 8987 |
| This theorem is referenced by: ensymb 9043 entr 9047 |
| Copyright terms: Public domain | W3C validator |