![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ener | Structured version Visualization version GIF version |
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
ener | ⊢ ≈ Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 9008 | . 2 ⊢ Rel ≈ | |
2 | bren 9013 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
3 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | f1ocnv 6874 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → ◡𝑓:𝑦–1-1-onto→𝑥) | |
6 | f1oen2g 9028 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡𝑓:𝑦–1-1-onto→𝑥) → 𝑦 ≈ 𝑥) | |
7 | 3, 4, 5, 6 | mp3an12i 1465 | . . . 4 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
8 | 7 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
9 | 2, 8 | sylbi 217 | . 2 ⊢ (𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥) |
10 | bren 9013 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1-onto→𝑦) | |
11 | bren 9013 | . . 3 ⊢ (𝑦 ≈ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) | |
12 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧)) | |
13 | vex 3492 | . . . . . 6 ⊢ 𝑧 ∈ V | |
14 | f1oco 6885 | . . . . . . 7 ⊢ ((𝑓:𝑦–1-1-onto→𝑧 ∧ 𝑔:𝑥–1-1-onto→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) | |
15 | 14 | ancoms 458 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
16 | f1oen2g 9028 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) | |
17 | 4, 13, 15, 16 | mp3an12i 1465 | . . . . 5 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
18 | 17 | exlimivv 1931 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
19 | 12, 18 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
20 | 10, 11, 19 | syl2anb 597 | . 2 ⊢ ((𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧) → 𝑥 ≈ 𝑧) |
21 | 4 | enref 9045 | . . 3 ⊢ 𝑥 ≈ 𝑥 |
22 | 4, 21 | 2th 264 | . 2 ⊢ (𝑥 ∈ V ↔ 𝑥 ≈ 𝑥) |
23 | 1, 9, 20, 22 | iseri 8790 | 1 ⊢ ≈ Er V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ◡ccnv 5699 ∘ ccom 5704 –1-1-onto→wf1o 6572 Er wer 8760 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-er 8763 df-en 9004 |
This theorem is referenced by: ensymb 9062 entr 9066 |
Copyright terms: Public domain | W3C validator |