Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ener | Structured version Visualization version GIF version |
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
ener | ⊢ ≈ Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8696 | . 2 ⊢ Rel ≈ | |
2 | bren 8701 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
3 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | f1ocnv 6712 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → ◡𝑓:𝑦–1-1-onto→𝑥) | |
6 | f1oen2g 8711 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡𝑓:𝑦–1-1-onto→𝑥) → 𝑦 ≈ 𝑥) | |
7 | 3, 4, 5, 6 | mp3an12i 1463 | . . . 4 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
8 | 7 | exlimiv 1934 | . . 3 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
9 | 2, 8 | sylbi 216 | . 2 ⊢ (𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥) |
10 | bren 8701 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1-onto→𝑦) | |
11 | bren 8701 | . . 3 ⊢ (𝑦 ≈ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) | |
12 | exdistrv 1960 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧)) | |
13 | vex 3426 | . . . . . 6 ⊢ 𝑧 ∈ V | |
14 | f1oco 6722 | . . . . . . 7 ⊢ ((𝑓:𝑦–1-1-onto→𝑧 ∧ 𝑔:𝑥–1-1-onto→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) | |
15 | 14 | ancoms 458 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
16 | f1oen2g 8711 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) | |
17 | 4, 13, 15, 16 | mp3an12i 1463 | . . . . 5 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
18 | 17 | exlimivv 1936 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
19 | 12, 18 | sylbir 234 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
20 | 10, 11, 19 | syl2anb 597 | . 2 ⊢ ((𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧) → 𝑥 ≈ 𝑧) |
21 | 4 | enref 8728 | . . 3 ⊢ 𝑥 ≈ 𝑥 |
22 | 4, 21 | 2th 263 | . 2 ⊢ (𝑥 ∈ V ↔ 𝑥 ≈ 𝑥) |
23 | 1, 9, 20, 22 | iseri 8483 | 1 ⊢ ≈ Er V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ◡ccnv 5579 ∘ ccom 5584 –1-1-onto→wf1o 6417 Er wer 8453 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 |
This theorem is referenced by: ensymb 8743 entr 8747 |
Copyright terms: Public domain | W3C validator |