MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ener Structured version   Visualization version   GIF version

Theorem ener 8926
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
ener ≈ Er V

Proof of Theorem ener
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 8877 . 2 Rel ≈
2 bren 8882 . . 3 (𝑥𝑦 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
3 vex 3440 . . . . 5 𝑦 ∈ V
4 vex 3440 . . . . 5 𝑥 ∈ V
5 f1ocnv 6776 . . . . 5 (𝑓:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑥)
6 f1oen2g 8894 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ 𝑓:𝑦1-1-onto𝑥) → 𝑦𝑥)
73, 4, 5, 6mp3an12i 1467 . . . 4 (𝑓:𝑥1-1-onto𝑦𝑦𝑥)
87exlimiv 1930 . . 3 (∃𝑓 𝑓:𝑥1-1-onto𝑦𝑦𝑥)
92, 8sylbi 217 . 2 (𝑥𝑦𝑦𝑥)
10 bren 8882 . . 3 (𝑥𝑦 ↔ ∃𝑔 𝑔:𝑥1-1-onto𝑦)
11 bren 8882 . . 3 (𝑦𝑧 ↔ ∃𝑓 𝑓:𝑦1-1-onto𝑧)
12 exdistrv 1955 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) ↔ (∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧))
13 vex 3440 . . . . . 6 𝑧 ∈ V
14 f1oco 6787 . . . . . . 7 ((𝑓:𝑦1-1-onto𝑧𝑔:𝑥1-1-onto𝑦) → (𝑓𝑔):𝑥1-1-onto𝑧)
1514ancoms 458 . . . . . 6 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → (𝑓𝑔):𝑥1-1-onto𝑧)
16 f1oen2g 8894 . . . . . 6 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓𝑔):𝑥1-1-onto𝑧) → 𝑥𝑧)
174, 13, 15, 16mp3an12i 1467 . . . . 5 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1817exlimivv 1932 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1912, 18sylbir 235 . . 3 ((∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2010, 11, 19syl2anb 598 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
214enref 8910 . . 3 𝑥𝑥
224, 212th 264 . 2 (𝑥 ∈ V ↔ 𝑥𝑥)
231, 9, 20, 22iseri 8652 1 ≈ Er V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  Vcvv 3436   class class class wbr 5092  ccnv 5618  ccom 5623  1-1-ontowf1o 6481   Er wer 8622  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-er 8625  df-en 8873
This theorem is referenced by:  ensymb  8927  entr  8931
  Copyright terms: Public domain W3C validator