| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ener | Structured version Visualization version GIF version | ||
| Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| ener | ⊢ ≈ Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8969 | . 2 ⊢ Rel ≈ | |
| 2 | bren 8974 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
| 3 | vex 3468 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | f1ocnv 6835 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → ◡𝑓:𝑦–1-1-onto→𝑥) | |
| 6 | f1oen2g 8988 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡𝑓:𝑦–1-1-onto→𝑥) → 𝑦 ≈ 𝑥) | |
| 7 | 3, 4, 5, 6 | mp3an12i 1467 | . . . 4 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
| 8 | 7 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
| 9 | 2, 8 | sylbi 217 | . 2 ⊢ (𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥) |
| 10 | bren 8974 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1-onto→𝑦) | |
| 11 | bren 8974 | . . 3 ⊢ (𝑦 ≈ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) | |
| 12 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧)) | |
| 13 | vex 3468 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 14 | f1oco 6846 | . . . . . . 7 ⊢ ((𝑓:𝑦–1-1-onto→𝑧 ∧ 𝑔:𝑥–1-1-onto→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) | |
| 15 | 14 | ancoms 458 | . . . . . 6 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
| 16 | f1oen2g 8988 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) | |
| 17 | 4, 13, 15, 16 | mp3an12i 1467 | . . . . 5 ⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 18 | 17 | exlimivv 1932 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 19 | 12, 18 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 20 | 10, 11, 19 | syl2anb 598 | . 2 ⊢ ((𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧) → 𝑥 ≈ 𝑧) |
| 21 | 4 | enref 9004 | . . 3 ⊢ 𝑥 ≈ 𝑥 |
| 22 | 4, 21 | 2th 264 | . 2 ⊢ (𝑥 ∈ V ↔ 𝑥 ≈ 𝑥) |
| 23 | 1, 9, 20, 22 | iseri 8751 | 1 ⊢ ≈ Er V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 ◡ccnv 5658 ∘ ccom 5663 –1-1-onto→wf1o 6535 Er wer 8721 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-er 8724 df-en 8965 |
| This theorem is referenced by: ensymb 9021 entr 9025 |
| Copyright terms: Public domain | W3C validator |