MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ener Structured version   Visualization version   GIF version

Theorem ener 8550
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
ener ≈ Er V

Proof of Theorem ener
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 8508 . 2 Rel ≈
2 bren 8512 . . 3 (𝑥𝑦 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
3 vex 3498 . . . . 5 𝑦 ∈ V
4 vex 3498 . . . . 5 𝑥 ∈ V
5 f1ocnv 6622 . . . . 5 (𝑓:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑥)
6 f1oen2g 8520 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ 𝑓:𝑦1-1-onto𝑥) → 𝑦𝑥)
73, 4, 5, 6mp3an12i 1461 . . . 4 (𝑓:𝑥1-1-onto𝑦𝑦𝑥)
87exlimiv 1927 . . 3 (∃𝑓 𝑓:𝑥1-1-onto𝑦𝑦𝑥)
92, 8sylbi 219 . 2 (𝑥𝑦𝑦𝑥)
10 bren 8512 . . 3 (𝑥𝑦 ↔ ∃𝑔 𝑔:𝑥1-1-onto𝑦)
11 bren 8512 . . 3 (𝑦𝑧 ↔ ∃𝑓 𝑓:𝑦1-1-onto𝑧)
12 exdistrv 1952 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) ↔ (∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧))
13 vex 3498 . . . . . 6 𝑧 ∈ V
14 f1oco 6632 . . . . . . 7 ((𝑓:𝑦1-1-onto𝑧𝑔:𝑥1-1-onto𝑦) → (𝑓𝑔):𝑥1-1-onto𝑧)
1514ancoms 461 . . . . . 6 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → (𝑓𝑔):𝑥1-1-onto𝑧)
16 f1oen2g 8520 . . . . . 6 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓𝑔):𝑥1-1-onto𝑧) → 𝑥𝑧)
174, 13, 15, 16mp3an12i 1461 . . . . 5 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1817exlimivv 1929 . . . 4 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
1912, 18sylbir 237 . . 3 ((∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2010, 11, 19syl2anb 599 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
214enref 8536 . . 3 𝑥𝑥
224, 212th 266 . 2 (𝑥 ∈ V ↔ 𝑥𝑥)
231, 9, 20, 22iseri 8310 1 ≈ Er V
Colors of variables: wff setvar class
Syntax hints:  wa 398  wex 1776  wcel 2110  Vcvv 3495   class class class wbr 5059  ccnv 5549  ccom 5554  1-1-ontowf1o 6349   Er wer 8280  cen 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-er 8283  df-en 8504
This theorem is referenced by:  ensymb  8551  entr  8555
  Copyright terms: Public domain W3C validator