MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcer Structured version   Visualization version   GIF version

Theorem phtpcer 24395
Description: Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
phtpcer ( ≃ph𝐽) Er (II Cn 𝐽)

Proof of Theorem phtpcer
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 24393 . 2 Rel ( ≃ph𝐽)
2 isphtpc 24394 . . . 4 (𝑥( ≃ph𝐽)𝑦 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅))
32simp2bi 1146 . . 3 (𝑥( ≃ph𝐽)𝑦𝑦 ∈ (II Cn 𝐽))
42simp1bi 1145 . . 3 (𝑥( ≃ph𝐽)𝑦𝑥 ∈ (II Cn 𝐽))
52simp3bi 1147 . . . . 5 (𝑥( ≃ph𝐽)𝑦 → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
6 n0 4311 . . . . 5 ((𝑥(PHtpy‘𝐽)𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
75, 6sylib 217 . . . 4 (𝑥( ≃ph𝐽)𝑦 → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
84adantr 481 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑥 ∈ (II Cn 𝐽))
93adantr 481 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑦 ∈ (II Cn 𝐽))
10 eqid 2731 . . . . . 6 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣)))
11 simpr 485 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
128, 9, 10, 11phtpycom 24388 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥))
1312ne0d 4300 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
147, 13exlimddv 1938 . . 3 (𝑥( ≃ph𝐽)𝑦 → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
15 isphtpc 24394 . . 3 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
163, 4, 14, 15syl3anbrc 1343 . 2 (𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑥)
174adantr 481 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥 ∈ (II Cn 𝐽))
18 simpr 485 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦( ≃ph𝐽)𝑧)
19 isphtpc 24394 . . . . 5 (𝑦( ≃ph𝐽)𝑧 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2018, 19sylib 217 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2120simp2d 1143 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑧 ∈ (II Cn 𝐽))
225adantr 481 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
2322, 6sylib 217 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
2420simp3d 1144 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅)
25 n0 4311 . . . . . 6 ((𝑦(PHtpy‘𝐽)𝑧) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
2624, 25sylib 217 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
27 exdistrv 1959 . . . . 5 (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) ↔ (∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
2823, 26, 27sylanbrc 583 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
29 eqid 2731 . . . . . . . 8 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1))))
3017adantr 481 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑥 ∈ (II Cn 𝐽))
3120simp1d 1142 . . . . . . . . 9 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦 ∈ (II Cn 𝐽))
3231adantr 481 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑦 ∈ (II Cn 𝐽))
3321adantr 481 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑧 ∈ (II Cn 𝐽))
34 simprl 769 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
35 simprr 771 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
3629, 30, 32, 33, 34, 35phtpycc 24391 . . . . . . 7 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧))
3736ne0d 4300 . . . . . 6 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
3837ex 413 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ((𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
3938exlimdvv 1937 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4028, 39mpd 15 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
41 isphtpc 24394 . . 3 (𝑥( ≃ph𝐽)𝑧 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4217, 21, 40, 41syl3anbrc 1343 . 2 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥( ≃ph𝐽)𝑧)
43 eqid 2731 . . . . . . . 8 (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) = (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦))
44 id 22 . . . . . . . 8 (𝑥 ∈ (II Cn 𝐽) → 𝑥 ∈ (II Cn 𝐽))
4543, 44phtpyid 24389 . . . . . . 7 (𝑥 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥))
4645ne0d 4300 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)
4746ancli 549 . . . . 5 (𝑥 ∈ (II Cn 𝐽) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
4847pm4.71ri 561 . . . 4 (𝑥 ∈ (II Cn 𝐽) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
49 df-3an 1089 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
50 3ancomb 1099 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5148, 49, 503bitr2i 298 . . 3 (𝑥 ∈ (II Cn 𝐽) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
52 isphtpc 24394 . . 3 (𝑥( ≃ph𝐽)𝑥 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5351, 52bitr4i 277 . 2 (𝑥 ∈ (II Cn 𝐽) ↔ 𝑥( ≃ph𝐽)𝑥)
541, 16, 42, 53iseri 8682 1 ( ≃ph𝐽) Er (II Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087  wex 1781  wcel 2106  wne 2939  c0 4287  ifcif 4491   class class class wbr 5110  cfv 6501  (class class class)co 7362  cmpo 7364   Er wer 8652  0cc0 11060  1c1 11061   · cmul 11065  cle 11199  cmin 11394   / cdiv 11821  2c2 12217  [,]cicc 13277   Cn ccn 22612  IIcii 24275  PHtpycphtpy 24368  phcphtpc 24369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-icc 13281  df-fz 13435  df-fzo 13578  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-cn 22615  df-cnp 22616  df-tx 22950  df-hmeo 23143  df-xms 23710  df-ms 23711  df-tms 23712  df-ii 24277  df-htpy 24370  df-phtpy 24371  df-phtpc 24392
This theorem is referenced by:  pcophtb  24429  pi1buni  24440  pi1addf  24447  pi1addval  24448  pi1grplem  24449  pi1inv  24452  pi1xfrf  24453  pi1xfr  24455  pi1xfrcnvlem  24456  pi1cof  24459  sconnpi1  33920
  Copyright terms: Public domain W3C validator