MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcer Structured version   Visualization version   GIF version

Theorem phtpcer 25012
Description: Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
phtpcer ( ≃ph𝐽) Er (II Cn 𝐽)

Proof of Theorem phtpcer
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 25010 . 2 Rel ( ≃ph𝐽)
2 isphtpc 25011 . . . 4 (𝑥( ≃ph𝐽)𝑦 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅))
32simp2bi 1143 . . 3 (𝑥( ≃ph𝐽)𝑦𝑦 ∈ (II Cn 𝐽))
42simp1bi 1142 . . 3 (𝑥( ≃ph𝐽)𝑦𝑥 ∈ (II Cn 𝐽))
52simp3bi 1144 . . . . 5 (𝑥( ≃ph𝐽)𝑦 → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
6 n0 4349 . . . . 5 ((𝑥(PHtpy‘𝐽)𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
75, 6sylib 217 . . . 4 (𝑥( ≃ph𝐽)𝑦 → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
84adantr 479 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑥 ∈ (II Cn 𝐽))
93adantr 479 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑦 ∈ (II Cn 𝐽))
10 eqid 2726 . . . . . 6 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣)))
11 simpr 483 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
128, 9, 10, 11phtpycom 25005 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥))
1312ne0d 4338 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
147, 13exlimddv 1931 . . 3 (𝑥( ≃ph𝐽)𝑦 → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
15 isphtpc 25011 . . 3 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
163, 4, 14, 15syl3anbrc 1340 . 2 (𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑥)
174adantr 479 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥 ∈ (II Cn 𝐽))
18 simpr 483 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦( ≃ph𝐽)𝑧)
19 isphtpc 25011 . . . . 5 (𝑦( ≃ph𝐽)𝑧 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2018, 19sylib 217 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2120simp2d 1140 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑧 ∈ (II Cn 𝐽))
225adantr 479 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
2322, 6sylib 217 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
2420simp3d 1141 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅)
25 n0 4349 . . . . . 6 ((𝑦(PHtpy‘𝐽)𝑧) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
2624, 25sylib 217 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
27 exdistrv 1952 . . . . 5 (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) ↔ (∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
2823, 26, 27sylanbrc 581 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
29 eqid 2726 . . . . . . . 8 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1))))
3017adantr 479 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑥 ∈ (II Cn 𝐽))
3120simp1d 1139 . . . . . . . . 9 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦 ∈ (II Cn 𝐽))
3231adantr 479 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑦 ∈ (II Cn 𝐽))
3321adantr 479 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑧 ∈ (II Cn 𝐽))
34 simprl 769 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
35 simprr 771 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
3629, 30, 32, 33, 34, 35phtpycc 25008 . . . . . . 7 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧))
3736ne0d 4338 . . . . . 6 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
3837ex 411 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ((𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
3938exlimdvv 1930 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4028, 39mpd 15 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
41 isphtpc 25011 . . 3 (𝑥( ≃ph𝐽)𝑧 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4217, 21, 40, 41syl3anbrc 1340 . 2 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥( ≃ph𝐽)𝑧)
43 eqid 2726 . . . . . . . 8 (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) = (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦))
44 id 22 . . . . . . . 8 (𝑥 ∈ (II Cn 𝐽) → 𝑥 ∈ (II Cn 𝐽))
4543, 44phtpyid 25006 . . . . . . 7 (𝑥 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥))
4645ne0d 4338 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)
4746ancli 547 . . . . 5 (𝑥 ∈ (II Cn 𝐽) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
4847pm4.71ri 559 . . . 4 (𝑥 ∈ (II Cn 𝐽) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
49 df-3an 1086 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
50 3ancomb 1096 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5148, 49, 503bitr2i 298 . . 3 (𝑥 ∈ (II Cn 𝐽) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
52 isphtpc 25011 . . 3 (𝑥( ≃ph𝐽)𝑥 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5351, 52bitr4i 277 . 2 (𝑥 ∈ (II Cn 𝐽) ↔ 𝑥( ≃ph𝐽)𝑥)
541, 16, 42, 53iseri 8761 1 ( ≃ph𝐽) Er (II Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wa 394  w3a 1084  wex 1774  wcel 2099  wne 2930  c0 4325  ifcif 4533   class class class wbr 5153  cfv 6554  (class class class)co 7424  cmpo 7426   Er wer 8731  0cc0 11158  1c1 11159   · cmul 11163  cle 11299  cmin 11494   / cdiv 11921  2c2 12319  [,]cicc 13381   Cn ccn 23219  IIcii 24886  PHtpycphtpy 24985  phcphtpc 24986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-cn 23222  df-cnp 23223  df-tx 23557  df-hmeo 23750  df-xms 24317  df-ms 24318  df-tms 24319  df-ii 24888  df-htpy 24987  df-phtpy 24988  df-phtpc 25009
This theorem is referenced by:  pcophtb  25047  pi1buni  25058  pi1addf  25065  pi1addval  25066  pi1grplem  25067  pi1inv  25070  pi1xfrf  25071  pi1xfr  25073  pi1xfrcnvlem  25074  pi1cof  25077  sconnpi1  35067
  Copyright terms: Public domain W3C validator