Step | Hyp | Ref
| Expression |
1 | | phtpcrel 24062 |
. 2
⊢ Rel (
≃ph‘𝐽) |
2 | | isphtpc 24063 |
. . . 4
⊢ (𝑥(
≃ph‘𝐽)𝑦 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)) |
3 | 2 | simp2bi 1144 |
. . 3
⊢ (𝑥(
≃ph‘𝐽)𝑦 → 𝑦 ∈ (II Cn 𝐽)) |
4 | 2 | simp1bi 1143 |
. . 3
⊢ (𝑥(
≃ph‘𝐽)𝑦 → 𝑥 ∈ (II Cn 𝐽)) |
5 | 2 | simp3bi 1145 |
. . . . 5
⊢ (𝑥(
≃ph‘𝐽)𝑦 → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅) |
6 | | n0 4277 |
. . . . 5
⊢ ((𝑥(PHtpy‘𝐽)𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) |
7 | 5, 6 | sylib 217 |
. . . 4
⊢ (𝑥(
≃ph‘𝐽)𝑦 → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) |
8 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑥 ∈ (II Cn 𝐽)) |
9 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑦 ∈ (II Cn 𝐽)) |
10 | | eqid 2738 |
. . . . . 6
⊢ (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) |
11 | | simpr 484 |
. . . . . 6
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) |
12 | 8, 9, 10, 11 | phtpycom 24057 |
. . . . 5
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥)) |
13 | 12 | ne0d 4266 |
. . . 4
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅) |
14 | 7, 13 | exlimddv 1939 |
. . 3
⊢ (𝑥(
≃ph‘𝐽)𝑦 → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅) |
15 | | isphtpc 24063 |
. . 3
⊢ (𝑦(
≃ph‘𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)) |
16 | 3, 4, 14, 15 | syl3anbrc 1341 |
. 2
⊢ (𝑥(
≃ph‘𝐽)𝑦 → 𝑦( ≃ph‘𝐽)𝑥) |
17 | 4 | adantr 480 |
. . 3
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → 𝑥 ∈ (II Cn 𝐽)) |
18 | | simpr 484 |
. . . . 5
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → 𝑦( ≃ph‘𝐽)𝑧) |
19 | | isphtpc 24063 |
. . . . 5
⊢ (𝑦(
≃ph‘𝐽)𝑧 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅)) |
20 | 18, 19 | sylib 217 |
. . . 4
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅)) |
21 | 20 | simp2d 1141 |
. . 3
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → 𝑧 ∈ (II Cn 𝐽)) |
22 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅) |
23 | 22, 6 | sylib 217 |
. . . . 5
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) |
24 | 20 | simp3d 1142 |
. . . . . 6
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅) |
25 | | n0 4277 |
. . . . . 6
⊢ ((𝑦(PHtpy‘𝐽)𝑧) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) |
26 | 24, 25 | sylib 217 |
. . . . 5
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) |
27 | | exdistrv 1960 |
. . . . 5
⊢
(∃𝑓∃𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) ↔ (∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) |
28 | 23, 26, 27 | sylanbrc 582 |
. . . 4
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → ∃𝑓∃𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) |
29 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) |
30 | 17 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑥 ∈ (II Cn 𝐽)) |
31 | 20 | simp1d 1140 |
. . . . . . . . 9
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → 𝑦 ∈ (II Cn 𝐽)) |
32 | 31 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑦 ∈ (II Cn 𝐽)) |
33 | 21 | adantr 480 |
. . . . . . . 8
⊢ (((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑧 ∈ (II Cn 𝐽)) |
34 | | simprl 767 |
. . . . . . . 8
⊢ (((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) |
35 | | simprr 769 |
. . . . . . . 8
⊢ (((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) |
36 | 29, 30, 32, 33, 34, 35 | phtpycc 24060 |
. . . . . . 7
⊢ (((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧)) |
37 | 36 | ne0d 4266 |
. . . . . 6
⊢ (((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅) |
38 | 37 | ex 412 |
. . . . 5
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → ((𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)) |
39 | 38 | exlimdvv 1938 |
. . . 4
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → (∃𝑓∃𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)) |
40 | 28, 39 | mpd 15 |
. . 3
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅) |
41 | | isphtpc 24063 |
. . 3
⊢ (𝑥(
≃ph‘𝐽)𝑧 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)) |
42 | 17, 21, 40, 41 | syl3anbrc 1341 |
. 2
⊢ ((𝑥(
≃ph‘𝐽)𝑦 ∧ 𝑦( ≃ph‘𝐽)𝑧) → 𝑥( ≃ph‘𝐽)𝑧) |
43 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥‘𝑦)) = (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥‘𝑦)) |
44 | | id 22 |
. . . . . . . 8
⊢ (𝑥 ∈ (II Cn 𝐽) → 𝑥 ∈ (II Cn 𝐽)) |
45 | 43, 44 | phtpyid 24058 |
. . . . . . 7
⊢ (𝑥 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥‘𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥)) |
46 | 45 | ne0d 4266 |
. . . . . 6
⊢ (𝑥 ∈ (II Cn 𝐽) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) |
47 | 46 | ancli 548 |
. . . . 5
⊢ (𝑥 ∈ (II Cn 𝐽) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)) |
48 | 47 | pm4.71ri 560 |
. . . 4
⊢ (𝑥 ∈ (II Cn 𝐽) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽))) |
49 | | df-3an 1087 |
. . . 4
⊢ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽))) |
50 | | 3ancomb 1097 |
. . . 4
⊢ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)) |
51 | 48, 49, 50 | 3bitr2i 298 |
. . 3
⊢ (𝑥 ∈ (II Cn 𝐽) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)) |
52 | | isphtpc 24063 |
. . 3
⊢ (𝑥(
≃ph‘𝐽)𝑥 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)) |
53 | 51, 52 | bitr4i 277 |
. 2
⊢ (𝑥 ∈ (II Cn 𝐽) ↔ 𝑥( ≃ph‘𝐽)𝑥) |
54 | 1, 16, 42, 53 | iseri 8483 |
1
⊢ (
≃ph‘𝐽) Er (II Cn 𝐽) |