MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcer Structured version   Visualization version   GIF version

Theorem phtpcer 24158
Description: Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
phtpcer ( ≃ph𝐽) Er (II Cn 𝐽)

Proof of Theorem phtpcer
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 24156 . 2 Rel ( ≃ph𝐽)
2 isphtpc 24157 . . . 4 (𝑥( ≃ph𝐽)𝑦 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅))
32simp2bi 1145 . . 3 (𝑥( ≃ph𝐽)𝑦𝑦 ∈ (II Cn 𝐽))
42simp1bi 1144 . . 3 (𝑥( ≃ph𝐽)𝑦𝑥 ∈ (II Cn 𝐽))
52simp3bi 1146 . . . . 5 (𝑥( ≃ph𝐽)𝑦 → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
6 n0 4280 . . . . 5 ((𝑥(PHtpy‘𝐽)𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
75, 6sylib 217 . . . 4 (𝑥( ≃ph𝐽)𝑦 → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
84adantr 481 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑥 ∈ (II Cn 𝐽))
93adantr 481 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑦 ∈ (II Cn 𝐽))
10 eqid 2738 . . . . . 6 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣)))
11 simpr 485 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
128, 9, 10, 11phtpycom 24151 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥))
1312ne0d 4269 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
147, 13exlimddv 1938 . . 3 (𝑥( ≃ph𝐽)𝑦 → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
15 isphtpc 24157 . . 3 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
163, 4, 14, 15syl3anbrc 1342 . 2 (𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑥)
174adantr 481 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥 ∈ (II Cn 𝐽))
18 simpr 485 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦( ≃ph𝐽)𝑧)
19 isphtpc 24157 . . . . 5 (𝑦( ≃ph𝐽)𝑧 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2018, 19sylib 217 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2120simp2d 1142 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑧 ∈ (II Cn 𝐽))
225adantr 481 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
2322, 6sylib 217 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
2420simp3d 1143 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅)
25 n0 4280 . . . . . 6 ((𝑦(PHtpy‘𝐽)𝑧) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
2624, 25sylib 217 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
27 exdistrv 1959 . . . . 5 (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) ↔ (∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
2823, 26, 27sylanbrc 583 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
29 eqid 2738 . . . . . . . 8 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1))))
3017adantr 481 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑥 ∈ (II Cn 𝐽))
3120simp1d 1141 . . . . . . . . 9 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦 ∈ (II Cn 𝐽))
3231adantr 481 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑦 ∈ (II Cn 𝐽))
3321adantr 481 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑧 ∈ (II Cn 𝐽))
34 simprl 768 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
35 simprr 770 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
3629, 30, 32, 33, 34, 35phtpycc 24154 . . . . . . 7 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧))
3736ne0d 4269 . . . . . 6 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
3837ex 413 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ((𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
3938exlimdvv 1937 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4028, 39mpd 15 . . 3 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
41 isphtpc 24157 . . 3 (𝑥( ≃ph𝐽)𝑧 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4217, 21, 40, 41syl3anbrc 1342 . 2 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥( ≃ph𝐽)𝑧)
43 eqid 2738 . . . . . . . 8 (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) = (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦))
44 id 22 . . . . . . . 8 (𝑥 ∈ (II Cn 𝐽) → 𝑥 ∈ (II Cn 𝐽))
4543, 44phtpyid 24152 . . . . . . 7 (𝑥 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥))
4645ne0d 4269 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)
4746ancli 549 . . . . 5 (𝑥 ∈ (II Cn 𝐽) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
4847pm4.71ri 561 . . . 4 (𝑥 ∈ (II Cn 𝐽) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
49 df-3an 1088 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
50 3ancomb 1098 . . . 4 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5148, 49, 503bitr2i 299 . . 3 (𝑥 ∈ (II Cn 𝐽) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
52 isphtpc 24157 . . 3 (𝑥( ≃ph𝐽)𝑥 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5351, 52bitr4i 277 . 2 (𝑥 ∈ (II Cn 𝐽) ↔ 𝑥( ≃ph𝐽)𝑥)
541, 16, 42, 53iseri 8525 1 ( ≃ph𝐽) Er (II Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086  wex 1782  wcel 2106  wne 2943  c0 4256  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  cmpo 7277   Er wer 8495  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  [,]cicc 13082   Cn ccn 22375  IIcii 24038  PHtpycphtpy 24131  phcphtpc 24132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-ii 24040  df-htpy 24133  df-phtpy 24134  df-phtpc 24155
This theorem is referenced by:  pcophtb  24192  pi1buni  24203  pi1addf  24210  pi1addval  24211  pi1grplem  24212  pi1inv  24215  pi1xfrf  24216  pi1xfr  24218  pi1xfrcnvlem  24219  pi1cof  24222  sconnpi1  33201
  Copyright terms: Public domain W3C validator