MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5-2 Structured version   Visualization version   GIF version

Theorem isfin5-2 10285
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin5-2 (𝐴𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴))))

Proof of Theorem isfin5-2
StepHypRef Expression
1 nne 2929 . . . . 5 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
21bicomi 224 . . . 4 (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)
32a1i 11 . . 3 (𝐴𝑉 → (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅))
4 djudoml 10079 . . . . 5 ((𝐴𝑉𝐴𝑉) → 𝐴 ≼ (𝐴𝐴))
54anidms 566 . . . 4 (𝐴𝑉𝐴 ≼ (𝐴𝐴))
6 brsdom 8900 . . . . 5 (𝐴 ≺ (𝐴𝐴) ↔ (𝐴 ≼ (𝐴𝐴) ∧ ¬ 𝐴 ≈ (𝐴𝐴)))
76baib 535 . . . 4 (𝐴 ≼ (𝐴𝐴) → (𝐴 ≺ (𝐴𝐴) ↔ ¬ 𝐴 ≈ (𝐴𝐴)))
85, 7syl 17 . . 3 (𝐴𝑉 → (𝐴 ≺ (𝐴𝐴) ↔ ¬ 𝐴 ≈ (𝐴𝐴)))
93, 8orbi12d 918 . 2 (𝐴𝑉 → ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴𝐴))))
10 isfin5 10193 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
11 ianor 983 . 2 (¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴𝐴)))
129, 10, 113bitr4g 314 1 (𝐴𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  c0 4284   class class class wbr 5092  cen 8869  cdom 8870  csdm 8871  cdju 9794  FinVcfin5 10176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-dju 9797  df-fin5 10183
This theorem is referenced by:  fin45  10286
  Copyright terms: Public domain W3C validator