MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5-2 Structured version   Visualization version   GIF version

Theorem isfin5-2 10382
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin5-2 (𝐴𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴))))

Proof of Theorem isfin5-2
StepHypRef Expression
1 nne 2944 . . . . 5 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
21bicomi 223 . . . 4 (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)
32a1i 11 . . 3 (𝐴𝑉 → (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅))
4 djudoml 10175 . . . . 5 ((𝐴𝑉𝐴𝑉) → 𝐴 ≼ (𝐴𝐴))
54anidms 567 . . . 4 (𝐴𝑉𝐴 ≼ (𝐴𝐴))
6 brsdom 8967 . . . . 5 (𝐴 ≺ (𝐴𝐴) ↔ (𝐴 ≼ (𝐴𝐴) ∧ ¬ 𝐴 ≈ (𝐴𝐴)))
76baib 536 . . . 4 (𝐴 ≼ (𝐴𝐴) → (𝐴 ≺ (𝐴𝐴) ↔ ¬ 𝐴 ≈ (𝐴𝐴)))
85, 7syl 17 . . 3 (𝐴𝑉 → (𝐴 ≺ (𝐴𝐴) ↔ ¬ 𝐴 ≈ (𝐴𝐴)))
93, 8orbi12d 917 . 2 (𝐴𝑉 → ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴𝐴))))
10 isfin5 10290 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
11 ianor 980 . 2 (¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴𝐴)))
129, 10, 113bitr4g 313 1 (𝐴𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  c0 4321   class class class wbr 5147  cen 8932  cdom 8933  csdm 8934  cdju 9889  FinVcfin5 10273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-dju 9892  df-fin5 10280
This theorem is referenced by:  fin45  10383
  Copyright terms: Public domain W3C validator