Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin5-2 | Structured version Visualization version GIF version |
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin5-2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2947 | . . . . 5 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | bicomi 223 | . . . 4 ⊢ (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)) |
4 | djudoml 9940 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≼ (𝐴 ⊔ 𝐴)) | |
5 | 4 | anidms 567 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
6 | brsdom 8763 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ (𝐴 ≼ (𝐴 ⊔ 𝐴) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) | |
7 | 6 | baib 536 | . . . 4 ⊢ (𝐴 ≼ (𝐴 ⊔ 𝐴) → (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
9 | 3, 8 | orbi12d 916 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
10 | isfin5 10055 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
11 | ianor 979 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) | |
12 | 9, 10, 11 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 ⊔ cdju 9656 FinVcfin5 10038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-dju 9659 df-fin5 10045 |
This theorem is referenced by: fin45 10148 |
Copyright terms: Public domain | W3C validator |