Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin5-2 | Structured version Visualization version GIF version |
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin5-2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2946 | . . . . 5 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | bicomi 223 | . . . 4 ⊢ (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)) |
4 | djudoml 9871 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≼ (𝐴 ⊔ 𝐴)) | |
5 | 4 | anidms 566 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
6 | brsdom 8718 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ (𝐴 ≼ (𝐴 ⊔ 𝐴) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) | |
7 | 6 | baib 535 | . . . 4 ⊢ (𝐴 ≼ (𝐴 ⊔ 𝐴) → (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
9 | 3, 8 | orbi12d 915 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
10 | isfin5 9986 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
11 | ianor 978 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) | |
12 | 9, 10, 11 | 3bitr4g 313 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 ⊔ cdju 9587 FinVcfin5 9969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-dju 9590 df-fin5 9976 |
This theorem is referenced by: fin45 10079 |
Copyright terms: Public domain | W3C validator |