![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin5-2 | Structured version Visualization version GIF version |
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin5-2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2938 | . . . . 5 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
2 | 1 | bicomi 223 | . . . 4 ⊢ (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅) |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)) |
4 | djudoml 10181 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 𝐴 ≼ (𝐴 ⊔ 𝐴)) | |
5 | 4 | anidms 566 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
6 | brsdom 8973 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ (𝐴 ≼ (𝐴 ⊔ 𝐴) ∧ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) | |
7 | 6 | baib 535 | . . . 4 ⊢ (𝐴 ≼ (𝐴 ⊔ 𝐴) → (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≺ (𝐴 ⊔ 𝐴) ↔ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) |
9 | 3, 8 | orbi12d 915 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
10 | isfin5 10296 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) | |
11 | ianor 978 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐴 ≈ (𝐴 ⊔ 𝐴))) | |
12 | 9, 10, 11 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∅c0 4317 class class class wbr 5141 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 ⊔ cdju 9895 FinVcfin5 10279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-1st 7974 df-2nd 7975 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-dju 9898 df-fin5 10286 |
This theorem is referenced by: fin45 10389 |
Copyright terms: Public domain | W3C validator |