![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibl0 | Structured version Visualization version GIF version |
Description: The zero function is integrable on any measurable set. (Unlike iblconst 25741, this does not require š“ to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
ibl0 | ⢠(š“ ā dom vol ā (š“ Ć {0}) ā šæ1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11231 | . . 3 ⢠0 ā ā | |
2 | mbfconst 25556 | . . 3 ⢠((š“ ā dom vol ā§ 0 ā ā) ā (š“ Ć {0}) ā MblFn) | |
3 | 1, 2 | mpan2 690 | . 2 ⢠(š“ ā dom vol ā (š“ Ć {0}) ā MblFn) |
4 | ax-icn 11192 | . . . . . . . 8 ⢠i ā ā | |
5 | ine0 11674 | . . . . . . . 8 ⢠i ā 0 | |
6 | elfzelz 13528 | . . . . . . . . 9 ⢠(š ā (0...3) ā š ā ā¤) | |
7 | 6 | ad2antlr 726 | . . . . . . . 8 ⢠(((š“ ā dom vol ā§ š ā (0...3)) ā§ š„ ā š“) ā š ā ā¤) |
8 | expclz 14076 | . . . . . . . . 9 ⢠((i ā ā ā§ i ā 0 ā§ š ā ā¤) ā (iāš) ā ā) | |
9 | expne0i 14086 | . . . . . . . . 9 ⢠((i ā ā ā§ i ā 0 ā§ š ā ā¤) ā (iāš) ā 0) | |
10 | 8, 9 | div0d 12014 | . . . . . . . 8 ⢠((i ā ā ā§ i ā 0 ā§ š ā ā¤) ā (0 / (iāš)) = 0) |
11 | 4, 5, 7, 10 | mp3an12i 1462 | . . . . . . 7 ⢠(((š“ ā dom vol ā§ š ā (0...3)) ā§ š„ ā š“) ā (0 / (iāš)) = 0) |
12 | 11 | fveq2d 6896 | . . . . . 6 ⢠(((š“ ā dom vol ā§ š ā (0...3)) ā§ š„ ā š“) ā (āā(0 / (iāš))) = (āā0)) |
13 | re0 15126 | . . . . . 6 ⢠(āā0) = 0 | |
14 | 12, 13 | eqtrdi 2784 | . . . . 5 ⢠(((š“ ā dom vol ā§ š ā (0...3)) ā§ š„ ā š“) ā (āā(0 / (iāš))) = 0) |
15 | 14 | itgvallem3 25709 | . . . 4 ⢠((š“ ā dom vol ā§ š ā (0...3)) ā (ā«2ā(š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(0 / (iāš)))), (āā(0 / (iāš))), 0))) = 0) |
16 | 0re 11241 | . . . 4 ⢠0 ā ā | |
17 | 15, 16 | eqeltrdi 2837 | . . 3 ⢠((š“ ā dom vol ā§ š ā (0...3)) ā (ā«2ā(š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(0 / (iāš)))), (āā(0 / (iāš))), 0))) ā ā) |
18 | 17 | ralrimiva 3142 | . 2 ⢠(š“ ā dom vol ā āš ā (0...3)(ā«2ā(š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(0 / (iāš)))), (āā(0 / (iāš))), 0))) ā ā) |
19 | eqidd 2729 | . . 3 ⢠(š“ ā dom vol ā (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(0 / (iāš)))), (āā(0 / (iāš))), 0)) = (š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(0 / (iāš)))), (āā(0 / (iāš))), 0))) | |
20 | eqidd 2729 | . . 3 ⢠((š“ ā dom vol ā§ š„ ā š“) ā (āā(0 / (iāš))) = (āā(0 / (iāš)))) | |
21 | c0ex 11233 | . . . . 5 ⢠0 ā V | |
22 | 21 | fconst 6778 | . . . 4 ⢠(š“ Ć {0}):š“ā¶{0} |
23 | fdm 6726 | . . . 4 ⢠((š“ Ć {0}):š“ā¶{0} ā dom (š“ Ć {0}) = š“) | |
24 | 22, 23 | mp1i 13 | . . 3 ⢠(š“ ā dom vol ā dom (š“ Ć {0}) = š“) |
25 | 21 | fvconst2 7211 | . . . 4 ⢠(š„ ā š“ ā ((š“ Ć {0})āš„) = 0) |
26 | 25 | adantl 481 | . . 3 ⢠((š“ ā dom vol ā§ š„ ā š“) ā ((š“ Ć {0})āš„) = 0) |
27 | 19, 20, 24, 26 | isibl 25689 | . 2 ⢠(š“ ā dom vol ā ((š“ Ć {0}) ā šæ1 ā ((š“ Ć {0}) ā MblFn ā§ āš ā (0...3)(ā«2ā(š„ ā ā ⦠if((š„ ā š“ ā§ 0 ⤠(āā(0 / (iāš)))), (āā(0 / (iāš))), 0))) ā ā))) |
28 | 3, 18, 27 | mpbir2and 712 | 1 ⢠(š“ ā dom vol ā (š“ Ć {0}) ā šæ1) |
Colors of variables: wff setvar class |
Syntax hints: ā wi 4 ā§ wa 395 ā§ w3a 1085 = wceq 1534 ā wcel 2099 ā wne 2936 āwral 3057 ifcif 4525 {csn 4625 class class class wbr 5143 ⦠cmpt 5226 Ć cxp 5671 dom cdm 5673 ā¶wf 6539 ācfv 6543 (class class class)co 7415 ācc 11131 ācr 11132 0cc0 11133 ici 11135 ⤠cle 11274 / cdiv 11896 3c3 12293 ā¤cz 12583 ...cfz 13511 ācexp 14053 ācre 15071 volcvol 25386 MblFncmbf 25537 ā«2citg2 25539 šæ1cibl 25540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-disj 5109 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-ofr 7681 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-er 8719 df-map 8841 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-sup 9460 df-inf 9461 df-oi 9528 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-q 12958 df-rp 13002 df-xadd 13120 df-ioo 13355 df-ico 13357 df-icc 13358 df-fz 13512 df-fzo 13655 df-fl 13784 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-sum 15660 df-xmet 21266 df-met 21267 df-ovol 25387 df-vol 25388 df-mbf 25542 df-itg1 25543 df-itg2 25544 df-ibl 25545 df-0p 25593 |
This theorem is referenced by: itgge0 25734 itgfsum 25750 bddiblnc 25765 |
Copyright terms: Public domain | W3C validator |