![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibl0 | Structured version Visualization version GIF version |
Description: The zero function is integrable on any measurable set. (Unlike iblconst 23925, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
ibl0 | ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10320 | . . 3 ⊢ 0 ∈ ℂ | |
2 | mbfconst 23741 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
3 | 1, 2 | mpan2 683 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn) |
4 | elfzelz 12596 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
5 | 4 | ad2antlr 719 | . . . . . . . 8 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
6 | ax-icn 10283 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
7 | ine0 10757 | . . . . . . . . 9 ⊢ i ≠ 0 | |
8 | expclz 13139 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ) | |
9 | expne0i 13146 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
10 | 8, 9 | div0d 11092 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0) |
11 | 6, 7, 10 | mp3an12 1576 | . . . . . . . 8 ⊢ (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (0 / (i↑𝑘)) = 0) |
13 | 12 | fveq2d 6415 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
14 | re0 14233 | . . . . . 6 ⊢ (ℜ‘0) = 0 | |
15 | 13, 14 | syl6eq 2849 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0) |
16 | 15 | itgvallem3 23893 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
17 | 0re 10330 | . . . 4 ⊢ 0 ∈ ℝ | |
18 | 16, 17 | syl6eqel 2886 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
19 | 18 | ralrimiva 3147 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
20 | eqidd 2800 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) | |
21 | eqidd 2800 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘)))) | |
22 | c0ex 10322 | . . . . 5 ⊢ 0 ∈ V | |
23 | 22 | fconst 6306 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶{0} |
24 | fdm 6264 | . . . 4 ⊢ ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴) | |
25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴) |
26 | 22 | fvconst2 6698 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
27 | 26 | adantl 474 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
28 | 20, 21, 25, 27 | isibl 23873 | . 2 ⊢ (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ))) |
29 | 3, 19, 28 | mpbir2and 705 | 1 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 ifcif 4277 {csn 4368 class class class wbr 4843 ↦ cmpt 4922 × cxp 5310 dom cdm 5312 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 ℝcr 10223 0cc0 10224 ici 10226 ≤ cle 10364 / cdiv 10976 3c3 11369 ℤcz 11666 ...cfz 12580 ↑cexp 13114 ℜcre 14178 volcvol 23571 MblFncmbf 23722 ∫2citg2 23724 𝐿1cibl 23725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-disj 4812 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-ofr 7132 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-xadd 12194 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-sum 14758 df-xmet 20061 df-met 20062 df-ovol 23572 df-vol 23573 df-mbf 23727 df-itg1 23728 df-itg2 23729 df-ibl 23730 df-0p 23778 |
This theorem is referenced by: itgge0 23918 itgfsum 23934 bddiblnc 33968 |
Copyright terms: Public domain | W3C validator |