MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibl0 Structured version   Visualization version   GIF version

Theorem ibl0 25664
Description: The zero function is integrable on any measurable set. (Unlike iblconst 25695, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
ibl0 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)

Proof of Theorem ibl0
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11142 . . 3 0 ∈ ℂ
2 mbfconst 25510 . . 3 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
31, 2mpan2 691 . 2 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn)
4 ax-icn 11103 . . . . . . . 8 i ∈ ℂ
5 ine0 11589 . . . . . . . 8 i ≠ 0
6 elfzelz 13461 . . . . . . . . 9 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
76ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
8 expclz 14025 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
9 expne0i 14035 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
108, 9div0d 11933 . . . . . . . 8 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
114, 5, 7, 10mp3an12i 1467 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (0 / (i↑𝑘)) = 0)
1211fveq2d 6844 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0))
13 re0 15094 . . . . . 6 (ℜ‘0) = 0
1412, 13eqtrdi 2780 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0)
1514itgvallem3 25663 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0)
16 0re 11152 . . . 4 0 ∈ ℝ
1715, 16eqeltrdi 2836 . . 3 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
1817ralrimiva 3125 . 2 (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
19 eqidd 2730 . . 3 (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
20 eqidd 2730 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
21 c0ex 11144 . . . . 5 0 ∈ V
2221fconst 6728 . . . 4 (𝐴 × {0}):𝐴⟶{0}
23 fdm 6679 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴)
2422, 23mp1i 13 . . 3 (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴)
2521fvconst2 7160 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
2625adantl 481 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
2719, 20, 24, 26isibl 25642 . 2 (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)))
283, 18, 27mpbir2and 713 1 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  ici 11046  cle 11185   / cdiv 11811  3c3 12218  cz 12505  ...cfz 13444  cexp 14002  cre 15039  volcvol 25340  MblFncmbf 25491  2citg2 25493  𝐿1cibl 25494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-xmet 21233  df-met 21234  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-itg2 25498  df-ibl 25499  df-0p 25547
This theorem is referenced by:  itgge0  25688  itgfsum  25704  bddiblnc  25719
  Copyright terms: Public domain W3C validator