MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibl0 Structured version   Visualization version   GIF version

Theorem ibl0 25842
Description: The zero function is integrable on any measurable set. (Unlike iblconst 25873, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
ibl0 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)

Proof of Theorem ibl0
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11282 . . 3 0 ∈ ℂ
2 mbfconst 25687 . . 3 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
31, 2mpan2 690 . 2 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn)
4 ax-icn 11243 . . . . . . . 8 i ∈ ℂ
5 ine0 11725 . . . . . . . 8 i ≠ 0
6 elfzelz 13584 . . . . . . . . 9 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
76ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
8 expclz 14135 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
9 expne0i 14145 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
108, 9div0d 12069 . . . . . . . 8 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
114, 5, 7, 10mp3an12i 1465 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (0 / (i↑𝑘)) = 0)
1211fveq2d 6924 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0))
13 re0 15201 . . . . . 6 (ℜ‘0) = 0
1412, 13eqtrdi 2796 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0)
1514itgvallem3 25841 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0)
16 0re 11292 . . . 4 0 ∈ ℝ
1715, 16eqeltrdi 2852 . . 3 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
1817ralrimiva 3152 . 2 (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
19 eqidd 2741 . . 3 (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
20 eqidd 2741 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
21 c0ex 11284 . . . . 5 0 ∈ V
2221fconst 6807 . . . 4 (𝐴 × {0}):𝐴⟶{0}
23 fdm 6756 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴)
2422, 23mp1i 13 . . 3 (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴)
2521fvconst2 7241 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
2625adantl 481 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
2719, 20, 24, 26isibl 25820 . 2 (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)))
283, 18, 27mpbir2and 712 1 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  ici 11186  cle 11325   / cdiv 11947  3c3 12349  cz 12639  ...cfz 13567  cexp 14112  cre 15146  volcvol 25517  MblFncmbf 25668  2citg2 25670  𝐿1cibl 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-0p 25724
This theorem is referenced by:  itgge0  25866  itgfsum  25882  bddiblnc  25897
  Copyright terms: Public domain W3C validator