Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibl0 | Structured version Visualization version GIF version |
Description: The zero function is integrable on any measurable set. (Unlike iblconst 25062, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
ibl0 | ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11046 | . . 3 ⊢ 0 ∈ ℂ | |
2 | mbfconst 24877 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
3 | 1, 2 | mpan2 688 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn) |
4 | ax-icn 11009 | . . . . . . . 8 ⊢ i ∈ ℂ | |
5 | ine0 11489 | . . . . . . . 8 ⊢ i ≠ 0 | |
6 | elfzelz 13335 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
7 | 6 | ad2antlr 724 | . . . . . . . 8 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
8 | expclz 13886 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ) | |
9 | expne0i 13894 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
10 | 8, 9 | div0d 11829 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0) |
11 | 4, 5, 7, 10 | mp3an12i 1464 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (0 / (i↑𝑘)) = 0) |
12 | 11 | fveq2d 6815 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
13 | re0 14939 | . . . . . 6 ⊢ (ℜ‘0) = 0 | |
14 | 12, 13 | eqtrdi 2792 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0) |
15 | 14 | itgvallem3 25030 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
16 | 0re 11056 | . . . 4 ⊢ 0 ∈ ℝ | |
17 | 15, 16 | eqeltrdi 2845 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
18 | 17 | ralrimiva 3139 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
19 | eqidd 2737 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) | |
20 | eqidd 2737 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘)))) | |
21 | c0ex 11048 | . . . . 5 ⊢ 0 ∈ V | |
22 | 21 | fconst 6697 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶{0} |
23 | fdm 6646 | . . . 4 ⊢ ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴) | |
24 | 22, 23 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴) |
25 | 21 | fvconst2 7118 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
26 | 25 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
27 | 19, 20, 24, 26 | isibl 25010 | . 2 ⊢ (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ))) |
28 | 3, 18, 27 | mpbir2and 710 | 1 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ifcif 4470 {csn 4570 class class class wbr 5086 ↦ cmpt 5169 × cxp 5605 dom cdm 5607 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ℂcc 10948 ℝcr 10949 0cc0 10950 ici 10952 ≤ cle 11089 / cdiv 11711 3c3 12108 ℤcz 12398 ...cfz 13318 ↑cexp 13861 ℜcre 14884 volcvol 24707 MblFncmbf 24858 ∫2citg2 24860 𝐿1cibl 24861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 ax-addf 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-disj 5052 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-ofr 7575 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-2o 8346 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-oi 9345 df-dju 9736 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-q 12768 df-rp 12810 df-xadd 12928 df-ioo 13162 df-ico 13164 df-icc 13165 df-fz 13319 df-fzo 13462 df-fl 13591 df-seq 13801 df-exp 13862 df-hash 14124 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-clim 15273 df-sum 15474 df-xmet 20670 df-met 20671 df-ovol 24708 df-vol 24709 df-mbf 24863 df-itg1 24864 df-itg2 24865 df-ibl 24866 df-0p 24914 |
This theorem is referenced by: itgge0 25055 itgfsum 25071 bddiblnc 25086 |
Copyright terms: Public domain | W3C validator |