| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibl0 | Structured version Visualization version GIF version | ||
| Description: The zero function is integrable on any measurable set. (Unlike iblconst 25717, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| ibl0 | ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11107 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | mbfconst 25532 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn) |
| 4 | ax-icn 11068 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 5 | ine0 11555 | . . . . . . . 8 ⊢ i ≠ 0 | |
| 6 | elfzelz 13427 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
| 7 | 6 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
| 8 | expclz 13991 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ) | |
| 9 | expne0i 14001 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
| 10 | 8, 9 | div0d 11899 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0) |
| 11 | 4, 5, 7, 10 | mp3an12i 1467 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (0 / (i↑𝑘)) = 0) |
| 12 | 11 | fveq2d 6826 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
| 13 | re0 15059 | . . . . . 6 ⊢ (ℜ‘0) = 0 | |
| 14 | 12, 13 | eqtrdi 2780 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0) |
| 15 | 14 | itgvallem3 25685 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
| 16 | 0re 11117 | . . . 4 ⊢ 0 ∈ ℝ | |
| 17 | 15, 16 | eqeltrdi 2836 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
| 18 | 17 | ralrimiva 3121 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
| 19 | eqidd 2730 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) | |
| 20 | eqidd 2730 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘)))) | |
| 21 | c0ex 11109 | . . . . 5 ⊢ 0 ∈ V | |
| 22 | 21 | fconst 6710 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶{0} |
| 23 | fdm 6661 | . . . 4 ⊢ ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴) | |
| 24 | 22, 23 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴) |
| 25 | 21 | fvconst2 7140 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 27 | 19, 20, 24, 26 | isibl 25664 | . 2 ⊢ (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 28 | 3, 18, 27 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ifcif 4476 {csn 4577 class class class wbr 5092 ↦ cmpt 5173 × cxp 5617 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 ici 11011 ≤ cle 11150 / cdiv 11777 3c3 12184 ℤcz 12471 ...cfz 13410 ↑cexp 13968 ℜcre 15004 volcvol 25362 MblFncmbf 25513 ∫2citg2 25515 𝐿1cibl 25516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xadd 13015 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21254 df-met 21255 df-ovol 25363 df-vol 25364 df-mbf 25518 df-itg1 25519 df-itg2 25520 df-ibl 25521 df-0p 25569 |
| This theorem is referenced by: itgge0 25710 itgfsum 25726 bddiblnc 25741 |
| Copyright terms: Public domain | W3C validator |