Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibl0 | Structured version Visualization version GIF version |
Description: The zero function is integrable on any measurable set. (Unlike iblconst 24715, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
ibl0 | ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10825 | . . 3 ⊢ 0 ∈ ℂ | |
2 | mbfconst 24530 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn) |
4 | ax-icn 10788 | . . . . . . . 8 ⊢ i ∈ ℂ | |
5 | ine0 11267 | . . . . . . . 8 ⊢ i ≠ 0 | |
6 | elfzelz 13112 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
7 | 6 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
8 | expclz 13660 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ) | |
9 | expne0i 13667 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
10 | 8, 9 | div0d 11607 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0) |
11 | 4, 5, 7, 10 | mp3an12i 1467 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (0 / (i↑𝑘)) = 0) |
12 | 11 | fveq2d 6721 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
13 | re0 14715 | . . . . . 6 ⊢ (ℜ‘0) = 0 | |
14 | 12, 13 | eqtrdi 2794 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0) |
15 | 14 | itgvallem3 24683 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
16 | 0re 10835 | . . . 4 ⊢ 0 ∈ ℝ | |
17 | 15, 16 | eqeltrdi 2846 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
18 | 17 | ralrimiva 3105 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
19 | eqidd 2738 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) | |
20 | eqidd 2738 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘)))) | |
21 | c0ex 10827 | . . . . 5 ⊢ 0 ∈ V | |
22 | 21 | fconst 6605 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶{0} |
23 | fdm 6554 | . . . 4 ⊢ ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴) | |
24 | 22, 23 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴) |
25 | 21 | fvconst2 7019 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
26 | 25 | adantl 485 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
27 | 19, 20, 24, 26 | isibl 24663 | . 2 ⊢ (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ))) |
28 | 3, 18, 27 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ifcif 4439 {csn 4541 class class class wbr 5053 ↦ cmpt 5135 × cxp 5549 dom cdm 5551 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 ici 10731 ≤ cle 10868 / cdiv 11489 3c3 11886 ℤcz 12176 ...cfz 13095 ↑cexp 13635 ℜcre 14660 volcvol 24360 MblFncmbf 24511 ∫2citg2 24513 𝐿1cibl 24514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-disj 5019 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-ofr 7470 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-oi 9126 df-dju 9517 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-rp 12587 df-xadd 12705 df-ioo 12939 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 df-xmet 20356 df-met 20357 df-ovol 24361 df-vol 24362 df-mbf 24516 df-itg1 24517 df-itg2 24518 df-ibl 24519 df-0p 24567 |
This theorem is referenced by: itgge0 24708 itgfsum 24724 bddiblnc 24739 |
Copyright terms: Public domain | W3C validator |