Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibl0 Structured version   Visualization version   GIF version

Theorem ibl0 24404
 Description: The zero function is integrable on any measurable set. (Unlike iblconst 24435, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
ibl0 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)

Proof of Theorem ibl0
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10629 . . 3 0 ∈ ℂ
2 mbfconst 24251 . . 3 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
31, 2mpan2 690 . 2 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn)
4 ax-icn 10592 . . . . . . . 8 i ∈ ℂ
5 ine0 11071 . . . . . . . 8 i ≠ 0
6 elfzelz 12909 . . . . . . . . 9 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
76ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
8 expclz 13457 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
9 expne0i 13464 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
108, 9div0d 11411 . . . . . . . 8 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
114, 5, 7, 10mp3an12i 1462 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (0 / (i↑𝑘)) = 0)
1211fveq2d 6654 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0))
13 re0 14510 . . . . . 6 (ℜ‘0) = 0
1412, 13eqtrdi 2849 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0)
1514itgvallem3 24403 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0)
16 0re 10639 . . . 4 0 ∈ ℝ
1715, 16eqeltrdi 2898 . . 3 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
1817ralrimiva 3149 . 2 (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
19 eqidd 2799 . . 3 (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
20 eqidd 2799 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
21 c0ex 10631 . . . . 5 0 ∈ V
2221fconst 6542 . . . 4 (𝐴 × {0}):𝐴⟶{0}
23 fdm 6498 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴)
2422, 23mp1i 13 . . 3 (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴)
2521fvconst2 6948 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
2625adantl 485 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
2719, 20, 24, 26isibl 24383 . 2 (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)))
283, 18, 27mpbir2and 712 1 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ifcif 4425  {csn 4525   class class class wbr 5031   ↦ cmpt 5111   × cxp 5518  dom cdm 5520  ⟶wf 6323  ‘cfv 6327  (class class class)co 7140  ℂcc 10531  ℝcr 10532  0cc0 10533  ici 10535   ≤ cle 10672   / cdiv 11293  3c3 11688  ℤcz 11976  ...cfz 12892  ↑cexp 13432  ℜcre 14455  volcvol 24081  MblFncmbf 24232  ∫2citg2 24234  𝐿1cibl 24235 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-inf2 9095  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-pre-sup 10611  ax-addf 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-disj 4997  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7395  df-ofr 7396  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-map 8398  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-div 11294  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-q 12344  df-rp 12385  df-xadd 12503  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-fl 13164  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-xmet 20092  df-met 20093  df-ovol 24082  df-vol 24083  df-mbf 24237  df-itg1 24238  df-itg2 24239  df-ibl 24240  df-0p 24288 This theorem is referenced by:  itgge0  24428  itgfsum  24444  bddiblnc  24459
 Copyright terms: Public domain W3C validator