MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibl0 Structured version   Visualization version   GIF version

Theorem ibl0 24951
Description: The zero function is integrable on any measurable set. (Unlike iblconst 24982, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
ibl0 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)

Proof of Theorem ibl0
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10967 . . 3 0 ∈ ℂ
2 mbfconst 24797 . . 3 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
31, 2mpan2 688 . 2 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn)
4 ax-icn 10930 . . . . . . . 8 i ∈ ℂ
5 ine0 11410 . . . . . . . 8 i ≠ 0
6 elfzelz 13256 . . . . . . . . 9 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
76ad2antlr 724 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
8 expclz 13807 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
9 expne0i 13815 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
108, 9div0d 11750 . . . . . . . 8 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
114, 5, 7, 10mp3an12i 1464 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (0 / (i↑𝑘)) = 0)
1211fveq2d 6778 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0))
13 re0 14863 . . . . . 6 (ℜ‘0) = 0
1412, 13eqtrdi 2794 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0)
1514itgvallem3 24950 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0)
16 0re 10977 . . . 4 0 ∈ ℝ
1715, 16eqeltrdi 2847 . . 3 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
1817ralrimiva 3103 . 2 (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
19 eqidd 2739 . . 3 (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
20 eqidd 2739 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
21 c0ex 10969 . . . . 5 0 ∈ V
2221fconst 6660 . . . 4 (𝐴 × {0}):𝐴⟶{0}
23 fdm 6609 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴)
2422, 23mp1i 13 . . 3 (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴)
2521fvconst2 7079 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
2625adantl 482 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
2719, 20, 24, 26isibl 24930 . 2 (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)))
283, 18, 27mpbir2and 710 1 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  ici 10873  cle 11010   / cdiv 11632  3c3 12029  cz 12319  ...cfz 13239  cexp 13782  cre 14808  volcvol 24627  MblFncmbf 24778  2citg2 24780  𝐿1cibl 24781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-0p 24834
This theorem is referenced by:  itgge0  24975  itgfsum  24991  bddiblnc  25006
  Copyright terms: Public domain W3C validator