![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibl0 | Structured version Visualization version GIF version |
Description: The zero function is integrable on any measurable set. (Unlike iblconst 25867, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
ibl0 | ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11250 | . . 3 ⊢ 0 ∈ ℂ | |
2 | mbfconst 25681 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn) |
4 | ax-icn 11211 | . . . . . . . 8 ⊢ i ∈ ℂ | |
5 | ine0 11695 | . . . . . . . 8 ⊢ i ≠ 0 | |
6 | elfzelz 13560 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
7 | 6 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
8 | expclz 14121 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ) | |
9 | expne0i 14131 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | |
10 | 8, 9 | div0d 12039 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0) |
11 | 4, 5, 7, 10 | mp3an12i 1464 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (0 / (i↑𝑘)) = 0) |
12 | 11 | fveq2d 6910 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0)) |
13 | re0 15187 | . . . . . 6 ⊢ (ℜ‘0) = 0 | |
14 | 12, 13 | eqtrdi 2790 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0) |
15 | 14 | itgvallem3 25835 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0) |
16 | 0re 11260 | . . . 4 ⊢ 0 ∈ ℝ | |
17 | 15, 16 | eqeltrdi 2846 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
18 | 17 | ralrimiva 3143 | . 2 ⊢ (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ) |
19 | eqidd 2735 | . . 3 ⊢ (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) | |
20 | eqidd 2735 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘)))) | |
21 | c0ex 11252 | . . . . 5 ⊢ 0 ∈ V | |
22 | 21 | fconst 6794 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶{0} |
23 | fdm 6745 | . . . 4 ⊢ ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴) | |
24 | 22, 23 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴) |
25 | 21 | fvconst2 7223 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
26 | 25 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
27 | 19, 20, 24, 26 | isibl 25814 | . 2 ⊢ (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ))) |
28 | 3, 18, 27 | mpbir2and 713 | 1 ⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ifcif 4530 {csn 4630 class class class wbr 5147 ↦ cmpt 5230 × cxp 5686 dom cdm 5688 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 ici 11154 ≤ cle 11293 / cdiv 11917 3c3 12319 ℤcz 12610 ...cfz 13543 ↑cexp 14098 ℜcre 15132 volcvol 25511 MblFncmbf 25662 ∫2citg2 25664 𝐿1cibl 25665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-disj 5115 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xadd 13152 df-ioo 13387 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-xmet 21374 df-met 21375 df-ovol 25512 df-vol 25513 df-mbf 25667 df-itg1 25668 df-itg2 25669 df-ibl 25670 df-0p 25718 |
This theorem is referenced by: itgge0 25860 itgfsum 25876 bddiblnc 25891 |
Copyright terms: Public domain | W3C validator |