MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncombf Structured version   Visualization version   GIF version

Theorem cncombf 25022
Description: The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncombf ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)

Proof of Theorem cncombf
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺 ∈ (𝐵cn→ℂ))
2 cncff 24256 . . . . 5 (𝐺 ∈ (𝐵cn→ℂ) → 𝐺:𝐵⟶ℂ)
31, 2syl 17 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺:𝐵⟶ℂ)
4 simp2 1137 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐹:𝐴𝐵)
5 fco 6692 . . . 4 ((𝐺:𝐵⟶ℂ ∧ 𝐹:𝐴𝐵) → (𝐺𝐹):𝐴⟶ℂ)
63, 4, 5syl2anc 584 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹):𝐴⟶ℂ)
74fdmd 6679 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 = 𝐴)
8 mbfdm 24990 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
983ad2ant1 1133 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 ∈ dom vol)
107, 9eqeltrrd 2839 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ∈ dom vol)
11 mblss 24895 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1210, 11syl 17 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ⊆ ℝ)
13 cnex 11132 . . . 4 ℂ ∈ V
14 reex 11142 . . . 4 ℝ ∈ V
15 elpm2r 8783 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
1613, 14, 15mpanl12 700 . . 3 (((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
176, 12, 16syl2anc 584 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
18 coeq1 5813 . . . . . . . . 9 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = ((ℜ ∘ 𝐺) ∘ 𝐹))
19 coass 6217 . . . . . . . . 9 ((ℜ ∘ 𝐺) ∘ 𝐹) = (ℜ ∘ (𝐺𝐹))
2018, 19eqtrdi 2792 . . . . . . . 8 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
2120cnveqd 5831 . . . . . . 7 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
2221imaeq1d 6012 . . . . . 6 (𝑔 = (ℜ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℜ ∘ (𝐺𝐹)) “ 𝑥))
2322eleq1d 2822 . . . . 5 (𝑔 = (ℜ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
24 cnvco 5841 . . . . . . . . . 10 (𝑔𝐹) = (𝐹𝑔)
2524imaeq1i 6010 . . . . . . . . 9 ((𝑔𝐹) “ 𝑥) = ((𝐹𝑔) “ 𝑥)
26 imaco 6203 . . . . . . . . 9 ((𝐹𝑔) “ 𝑥) = (𝐹 “ (𝑔𝑥))
2725, 26eqtri 2764 . . . . . . . 8 ((𝑔𝐹) “ 𝑥) = (𝐹 “ (𝑔𝑥))
28 simplll 773 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹 ∈ MblFn)
29 simpllr 774 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹:𝐴𝐵)
30 cncfrss 24254 . . . . . . . . . 10 (𝑔 ∈ (𝐵cn→ℝ) → 𝐵 ⊆ ℂ)
3130adantl 482 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐵 ⊆ ℂ)
32 simpr 485 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (𝐵cn→ℝ))
33 ax-resscn 11108 . . . . . . . . . . . 12 ℝ ⊆ ℂ
34 eqid 2736 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
35 eqid 2736 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t 𝐵) = ((TopOpen‘ℂfld) ↾t 𝐵)
3634tgioo2 24166 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3734, 35, 36cncfcn 24273 . . . . . . . . . . . 12 ((𝐵 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3831, 33, 37sylancl 586 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3932, 38eleqtrd 2840 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
40 retopbas 24124 . . . . . . . . . . . 12 ran (,) ∈ TopBases
41 bastg 22316 . . . . . . . . . . . 12 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4240, 41ax-mp 5 . . . . . . . . . . 11 ran (,) ⊆ (topGen‘ran (,))
43 simplr 767 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ ran (,))
4442, 43sselid 3942 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ (topGen‘ran (,)))
45 cnima 22616 . . . . . . . . . 10 ((𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4639, 44, 45syl2anc 584 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4734, 35mbfimaopn2 25021 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐵 ⊆ ℂ) ∧ (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4828, 29, 31, 46, 47syl31anc 1373 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4927, 48eqeltrid 2842 . . . . . . 7 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → ((𝑔𝐹) “ 𝑥) ∈ dom vol)
5049ralrimiva 3143 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
51503adantl3 1168 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
52 recncf 24265 . . . . . . . 8 ℜ ∈ (ℂ–cn→ℝ)
5352a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℜ ∈ (ℂ–cn→ℝ))
541, 53cncfco 24270 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
5554adantr 481 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
5623, 51, 55rspcdva 3582 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
57 coeq1 5813 . . . . . . . . 9 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = ((ℑ ∘ 𝐺) ∘ 𝐹))
58 coass 6217 . . . . . . . . 9 ((ℑ ∘ 𝐺) ∘ 𝐹) = (ℑ ∘ (𝐺𝐹))
5957, 58eqtrdi 2792 . . . . . . . 8 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6059cnveqd 5831 . . . . . . 7 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6160imaeq1d 6012 . . . . . 6 (𝑔 = (ℑ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℑ ∘ (𝐺𝐹)) “ 𝑥))
6261eleq1d 2822 . . . . 5 (𝑔 = (ℑ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
63 imcncf 24266 . . . . . . . 8 ℑ ∈ (ℂ–cn→ℝ)
6463a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℑ ∈ (ℂ–cn→ℝ))
651, 64cncfco 24270 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6665adantr 481 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6762, 51, 66rspcdva 3582 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
6856, 67jca 512 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
6968ralrimiva 3143 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
70 ismbf1 24988 . 2 ((𝐺𝐹) ∈ MblFn ↔ ((𝐺𝐹) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)))
7117, 69, 70sylanbrc 583 1 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  pm cpm 8766  cc 11049  cr 11050  (,)cioo 13264  cre 14982  cim 14983  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  TopBasesctb 22295   Cn ccn 22575  cnccncf 24239  volcvol 24827  MblFncmbf 24978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983
This theorem is referenced by:  iblabslem  25192  iblabs  25193  bddmulibl  25203
  Copyright terms: Public domain W3C validator