| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1138 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → 𝐺 ∈ (𝐵–cn→ℂ)) |
| 2 | | cncff 24842 |
. . . . 5
⊢ (𝐺 ∈ (𝐵–cn→ℂ) → 𝐺:𝐵⟶ℂ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → 𝐺:𝐵⟶ℂ) |
| 4 | | simp2 1137 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → 𝐹:𝐴⟶𝐵) |
| 5 | | fco 6735 |
. . . 4
⊢ ((𝐺:𝐵⟶ℂ ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹):𝐴⟶ℂ) |
| 6 | 3, 4, 5 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (𝐺 ∘ 𝐹):𝐴⟶ℂ) |
| 7 | 4 | fdmd 6721 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → dom 𝐹 = 𝐴) |
| 8 | | mbfdm 25584 |
. . . . . 6
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
| 9 | 8 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → dom 𝐹 ∈ dom vol) |
| 10 | 7, 9 | eqeltrrd 2836 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → 𝐴 ∈ dom vol) |
| 11 | | mblss 25489 |
. . . 4
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
| 12 | 10, 11 | syl 17 |
. . 3
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → 𝐴 ⊆ ℝ) |
| 13 | | cnex 11215 |
. . . 4
⊢ ℂ
∈ V |
| 14 | | reex 11225 |
. . . 4
⊢ ℝ
∈ V |
| 15 | | elpm2r 8864 |
. . . 4
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐺 ∘ 𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐺 ∘ 𝐹) ∈ (ℂ ↑pm
ℝ)) |
| 16 | 13, 14, 15 | mpanl12 702 |
. . 3
⊢ (((𝐺 ∘ 𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐺 ∘ 𝐹) ∈ (ℂ ↑pm
ℝ)) |
| 17 | 6, 12, 16 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (𝐺 ∘ 𝐹) ∈ (ℂ ↑pm
ℝ)) |
| 18 | | coeq1 5842 |
. . . . . . . . 9
⊢ (𝑔 = (ℜ ∘ 𝐺) → (𝑔 ∘ 𝐹) = ((ℜ ∘ 𝐺) ∘ 𝐹)) |
| 19 | | coass 6259 |
. . . . . . . . 9
⊢ ((ℜ
∘ 𝐺) ∘ 𝐹) = (ℜ ∘ (𝐺 ∘ 𝐹)) |
| 20 | 18, 19 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑔 = (ℜ ∘ 𝐺) → (𝑔 ∘ 𝐹) = (ℜ ∘ (𝐺 ∘ 𝐹))) |
| 21 | 20 | cnveqd 5860 |
. . . . . . 7
⊢ (𝑔 = (ℜ ∘ 𝐺) → ◡(𝑔 ∘ 𝐹) = ◡(ℜ ∘ (𝐺 ∘ 𝐹))) |
| 22 | 21 | imaeq1d 6051 |
. . . . . 6
⊢ (𝑔 = (ℜ ∘ 𝐺) → (◡(𝑔 ∘ 𝐹) “ 𝑥) = (◡(ℜ ∘ (𝐺 ∘ 𝐹)) “ 𝑥)) |
| 23 | 22 | eleq1d 2820 |
. . . . 5
⊢ (𝑔 = (ℜ ∘ 𝐺) → ((◡(𝑔 ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol)) |
| 24 | | cnvco 5870 |
. . . . . . . . . 10
⊢ ◡(𝑔 ∘ 𝐹) = (◡𝐹 ∘ ◡𝑔) |
| 25 | 24 | imaeq1i 6049 |
. . . . . . . . 9
⊢ (◡(𝑔 ∘ 𝐹) “ 𝑥) = ((◡𝐹 ∘ ◡𝑔) “ 𝑥) |
| 26 | | imaco 6245 |
. . . . . . . . 9
⊢ ((◡𝐹 ∘ ◡𝑔) “ 𝑥) = (◡𝐹 “ (◡𝑔 “ 𝑥)) |
| 27 | 25, 26 | eqtri 2759 |
. . . . . . . 8
⊢ (◡(𝑔 ∘ 𝐹) “ 𝑥) = (◡𝐹 “ (◡𝑔 “ 𝑥)) |
| 28 | | simplll 774 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → 𝐹 ∈ MblFn) |
| 29 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → 𝐹:𝐴⟶𝐵) |
| 30 | | cncfrss 24840 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝐵–cn→ℝ) → 𝐵 ⊆ ℂ) |
| 31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → 𝐵 ⊆ ℂ) |
| 32 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → 𝑔 ∈ (𝐵–cn→ℝ)) |
| 33 | | ax-resscn 11191 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ |
| 34 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 35 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ↾t 𝐵) =
((TopOpen‘ℂfld) ↾t 𝐵) |
| 36 | | tgioo4 24749 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 37 | 34, 35, 36 | cncfcn 24859 |
. . . . . . . . . . . 12
⊢ ((𝐵 ⊆ ℂ ∧ ℝ
⊆ ℂ) → (𝐵–cn→ℝ) =
(((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran
(,)))) |
| 38 | 31, 33, 37 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → (𝐵–cn→ℝ) =
(((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran
(,)))) |
| 39 | 32, 38 | eleqtrd 2837 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → 𝑔 ∈
(((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran
(,)))) |
| 40 | | retopbas 24704 |
. . . . . . . . . . . 12
⊢ ran (,)
∈ TopBases |
| 41 | | bastg 22909 |
. . . . . . . . . . . 12
⊢ (ran (,)
∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ran (,)
⊆ (topGen‘ran (,)) |
| 43 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → 𝑥 ∈ ran (,)) |
| 44 | 42, 43 | sselid 3961 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → 𝑥 ∈ (topGen‘ran
(,))) |
| 45 | | cnima 23208 |
. . . . . . . . . 10
⊢ ((𝑔 ∈
(((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,)))
→ (◡𝑔 “ 𝑥) ∈
((TopOpen‘ℂfld) ↾t 𝐵)) |
| 46 | 39, 44, 45 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → (◡𝑔 “ 𝑥) ∈
((TopOpen‘ℂfld) ↾t 𝐵)) |
| 47 | 34, 35 | mbfimaopn2 25615 |
. . . . . . . . 9
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ ℂ) ∧ (◡𝑔 “ 𝑥) ∈
((TopOpen‘ℂfld) ↾t 𝐵)) → (◡𝐹 “ (◡𝑔 “ 𝑥)) ∈ dom vol) |
| 48 | 28, 29, 31, 46, 47 | syl31anc 1375 |
. . . . . . . 8
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → (◡𝐹 “ (◡𝑔 “ 𝑥)) ∈ dom vol) |
| 49 | 27, 48 | eqeltrid 2839 |
. . . . . . 7
⊢ ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵–cn→ℝ)) → (◡(𝑔 ∘ 𝐹) “ 𝑥) ∈ dom vol) |
| 50 | 49 | ralrimiva 3133 |
. . . . . 6
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵–cn→ℝ)(◡(𝑔 ∘ 𝐹) “ 𝑥) ∈ dom vol) |
| 51 | 50 | 3adantl3 1169 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵–cn→ℝ)(◡(𝑔 ∘ 𝐹) “ 𝑥) ∈ dom vol) |
| 52 | | recncf 24851 |
. . . . . . . 8
⊢ ℜ
∈ (ℂ–cn→ℝ) |
| 53 | 52 | a1i 11 |
. . . . . . 7
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → ℜ ∈
(ℂ–cn→ℝ)) |
| 54 | 1, 53 | cncfco 24856 |
. . . . . 6
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (ℜ ∘ 𝐺) ∈ (𝐵–cn→ℝ)) |
| 55 | 54 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐺) ∈ (𝐵–cn→ℝ)) |
| 56 | 23, 51, 55 | rspcdva 3607 |
. . . 4
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (◡(ℜ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol) |
| 57 | | coeq1 5842 |
. . . . . . . . 9
⊢ (𝑔 = (ℑ ∘ 𝐺) → (𝑔 ∘ 𝐹) = ((ℑ ∘ 𝐺) ∘ 𝐹)) |
| 58 | | coass 6259 |
. . . . . . . . 9
⊢ ((ℑ
∘ 𝐺) ∘ 𝐹) = (ℑ ∘ (𝐺 ∘ 𝐹)) |
| 59 | 57, 58 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑔 = (ℑ ∘ 𝐺) → (𝑔 ∘ 𝐹) = (ℑ ∘ (𝐺 ∘ 𝐹))) |
| 60 | 59 | cnveqd 5860 |
. . . . . . 7
⊢ (𝑔 = (ℑ ∘ 𝐺) → ◡(𝑔 ∘ 𝐹) = ◡(ℑ ∘ (𝐺 ∘ 𝐹))) |
| 61 | 60 | imaeq1d 6051 |
. . . . . 6
⊢ (𝑔 = (ℑ ∘ 𝐺) → (◡(𝑔 ∘ 𝐹) “ 𝑥) = (◡(ℑ ∘ (𝐺 ∘ 𝐹)) “ 𝑥)) |
| 62 | 61 | eleq1d 2820 |
. . . . 5
⊢ (𝑔 = (ℑ ∘ 𝐺) → ((◡(𝑔 ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (◡(ℑ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol)) |
| 63 | | imcncf 24852 |
. . . . . . . 8
⊢ ℑ
∈ (ℂ–cn→ℝ) |
| 64 | 63 | a1i 11 |
. . . . . . 7
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → ℑ ∈
(ℂ–cn→ℝ)) |
| 65 | 1, 64 | cncfco 24856 |
. . . . . 6
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (ℑ ∘ 𝐺) ∈ (𝐵–cn→ℝ)) |
| 66 | 65 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘
𝐺) ∈ (𝐵–cn→ℝ)) |
| 67 | 62, 51, 66 | rspcdva 3607 |
. . . 4
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (◡(ℑ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol) |
| 68 | 56, 67 | jca 511 |
. . 3
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((◡(ℜ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol)) |
| 69 | 68 | ralrimiva 3133 |
. 2
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → ∀𝑥 ∈ ran (,)((◡(ℜ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol)) |
| 70 | | ismbf1 25582 |
. 2
⊢ ((𝐺 ∘ 𝐹) ∈ MblFn ↔ ((𝐺 ∘ 𝐹) ∈ (ℂ ↑pm
ℝ) ∧ ∀𝑥
∈ ran (,)((◡(ℜ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ (𝐺 ∘ 𝐹)) “ 𝑥) ∈ dom vol))) |
| 71 | 17, 69, 70 | sylanbrc 583 |
1
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺 ∈ (𝐵–cn→ℂ)) → (𝐺 ∘ 𝐹) ∈ MblFn) |