MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncombf Structured version   Visualization version   GIF version

Theorem cncombf 24822
Description: The composition of a continuous function with a measurable function is measurable. (More generally, 𝐺 can be a Borel-measurable function, but notably the condition that 𝐺 be only measurable is too weak, the usual counterexample taking 𝐺 to be the Cantor function and 𝐹 the indicator function of the 𝐺-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncombf ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)

Proof of Theorem cncombf
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺 ∈ (𝐵cn→ℂ))
2 cncff 24056 . . . . 5 (𝐺 ∈ (𝐵cn→ℂ) → 𝐺:𝐵⟶ℂ)
31, 2syl 17 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐺:𝐵⟶ℂ)
4 simp2 1136 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐹:𝐴𝐵)
5 fco 6624 . . . 4 ((𝐺:𝐵⟶ℂ ∧ 𝐹:𝐴𝐵) → (𝐺𝐹):𝐴⟶ℂ)
63, 4, 5syl2anc 584 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹):𝐴⟶ℂ)
74fdmd 6611 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 = 𝐴)
8 mbfdm 24790 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
983ad2ant1 1132 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → dom 𝐹 ∈ dom vol)
107, 9eqeltrrd 2840 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ∈ dom vol)
11 mblss 24695 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1210, 11syl 17 . . 3 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → 𝐴 ⊆ ℝ)
13 cnex 10952 . . . 4 ℂ ∈ V
14 reex 10962 . . . 4 ℝ ∈ V
15 elpm2r 8633 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
1613, 14, 15mpanl12 699 . . 3 (((𝐺𝐹):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
176, 12, 16syl2anc 584 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ (ℂ ↑pm ℝ))
18 coeq1 5766 . . . . . . . . 9 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = ((ℜ ∘ 𝐺) ∘ 𝐹))
19 coass 6169 . . . . . . . . 9 ((ℜ ∘ 𝐺) ∘ 𝐹) = (ℜ ∘ (𝐺𝐹))
2018, 19eqtrdi 2794 . . . . . . . 8 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
2120cnveqd 5784 . . . . . . 7 (𝑔 = (ℜ ∘ 𝐺) → (𝑔𝐹) = (ℜ ∘ (𝐺𝐹)))
2221imaeq1d 5968 . . . . . 6 (𝑔 = (ℜ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℜ ∘ (𝐺𝐹)) “ 𝑥))
2322eleq1d 2823 . . . . 5 (𝑔 = (ℜ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
24 cnvco 5794 . . . . . . . . . 10 (𝑔𝐹) = (𝐹𝑔)
2524imaeq1i 5966 . . . . . . . . 9 ((𝑔𝐹) “ 𝑥) = ((𝐹𝑔) “ 𝑥)
26 imaco 6155 . . . . . . . . 9 ((𝐹𝑔) “ 𝑥) = (𝐹 “ (𝑔𝑥))
2725, 26eqtri 2766 . . . . . . . 8 ((𝑔𝐹) “ 𝑥) = (𝐹 “ (𝑔𝑥))
28 simplll 772 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹 ∈ MblFn)
29 simpllr 773 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐹:𝐴𝐵)
30 cncfrss 24054 . . . . . . . . . 10 (𝑔 ∈ (𝐵cn→ℝ) → 𝐵 ⊆ ℂ)
3130adantl 482 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝐵 ⊆ ℂ)
32 simpr 485 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (𝐵cn→ℝ))
33 ax-resscn 10928 . . . . . . . . . . . 12 ℝ ⊆ ℂ
34 eqid 2738 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
35 eqid 2738 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t 𝐵) = ((TopOpen‘ℂfld) ↾t 𝐵)
3634tgioo2 23966 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3734, 35, 36cncfcn 24073 . . . . . . . . . . . 12 ((𝐵 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3831, 33, 37sylancl 586 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐵cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
3932, 38eleqtrd 2841 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))))
40 retopbas 23924 . . . . . . . . . . . 12 ran (,) ∈ TopBases
41 bastg 22116 . . . . . . . . . . . 12 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4240, 41ax-mp 5 . . . . . . . . . . 11 ran (,) ⊆ (topGen‘ran (,))
43 simplr 766 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ ran (,))
4442, 43sselid 3919 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → 𝑥 ∈ (topGen‘ran (,)))
45 cnima 22416 . . . . . . . . . 10 ((𝑔 ∈ (((TopOpen‘ℂfld) ↾t 𝐵) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4639, 44, 45syl2anc 584 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵))
4734, 35mbfimaopn2 24821 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐵 ⊆ ℂ) ∧ (𝑔𝑥) ∈ ((TopOpen‘ℂfld) ↾t 𝐵)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4828, 29, 31, 46, 47syl31anc 1372 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → (𝐹 “ (𝑔𝑥)) ∈ dom vol)
4927, 48eqeltrid 2843 . . . . . . 7 ((((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) ∧ 𝑔 ∈ (𝐵cn→ℝ)) → ((𝑔𝐹) “ 𝑥) ∈ dom vol)
5049ralrimiva 3103 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
51503adantl3 1167 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ∀𝑔 ∈ (𝐵cn→ℝ)((𝑔𝐹) “ 𝑥) ∈ dom vol)
52 recncf 24065 . . . . . . . 8 ℜ ∈ (ℂ–cn→ℝ)
5352a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℜ ∈ (ℂ–cn→ℝ))
541, 53cncfco 24070 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
5554adantr 481 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐺) ∈ (𝐵cn→ℝ))
5623, 51, 55rspcdva 3562 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
57 coeq1 5766 . . . . . . . . 9 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = ((ℑ ∘ 𝐺) ∘ 𝐹))
58 coass 6169 . . . . . . . . 9 ((ℑ ∘ 𝐺) ∘ 𝐹) = (ℑ ∘ (𝐺𝐹))
5957, 58eqtrdi 2794 . . . . . . . 8 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6059cnveqd 5784 . . . . . . 7 (𝑔 = (ℑ ∘ 𝐺) → (𝑔𝐹) = (ℑ ∘ (𝐺𝐹)))
6160imaeq1d 5968 . . . . . 6 (𝑔 = (ℑ ∘ 𝐺) → ((𝑔𝐹) “ 𝑥) = ((ℑ ∘ (𝐺𝐹)) “ 𝑥))
6261eleq1d 2823 . . . . 5 (𝑔 = (ℑ ∘ 𝐺) → (((𝑔𝐹) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
63 imcncf 24066 . . . . . . . 8 ℑ ∈ (ℂ–cn→ℝ)
6463a1i 11 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ℑ ∈ (ℂ–cn→ℝ))
651, 64cncfco 24070 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6665adantr 481 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐺) ∈ (𝐵cn→ℝ))
6762, 51, 66rspcdva 3562 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)
6856, 67jca 512 . . 3 (((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
6968ralrimiva 3103 . 2 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol))
70 ismbf1 24788 . 2 ((𝐺𝐹) ∈ MblFn ↔ ((𝐺𝐹) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ (𝐺𝐹)) “ 𝑥) ∈ dom vol)))
7117, 69, 70sylanbrc 583 1 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴𝐵𝐺 ∈ (𝐵cn→ℂ)) → (𝐺𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869  cr 10870  (,)cioo 13079  cre 14808  cim 14809  t crest 17131  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  TopBasesctb 22095   Cn ccn 22375  cnccncf 24039  volcvol 24627  MblFncmbf 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783
This theorem is referenced by:  iblabslem  24992  iblabs  24993  bddmulibl  25003
  Copyright terms: Public domain W3C validator