| Step | Hyp | Ref
| Expression |
| 1 | | ref 15151 |
. . . 4
⊢
ℜ:ℂ⟶ℝ |
| 2 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom
vol) |
| 3 | | ismbf1 25659 |
. . . . . . . . 9
⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ
↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| 4 | 3 | simplbi 497 |
. . . . . . . 8
⊢ (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ
↑pm ℝ)) |
| 5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ
↑pm ℝ)) |
| 6 | | pmresg 8910 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (ℂ
↑pm ℝ)) → (𝐹 ↾ 𝐴) ∈ (ℂ ↑pm 𝐴)) |
| 7 | 2, 5, 6 | syl2anc 584 |
. . . . . 6
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹 ↾ 𝐴) ∈ (ℂ ↑pm 𝐴)) |
| 8 | | cnex 11236 |
. . . . . . 7
⊢ ℂ
∈ V |
| 9 | | elpm2g 8884 |
. . . . . . 7
⊢ ((ℂ
∈ V ∧ 𝐴 ∈ dom
vol) → ((𝐹 ↾
𝐴) ∈ (ℂ
↑pm 𝐴)
↔ ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ ∧ dom (𝐹 ↾ 𝐴) ⊆ 𝐴))) |
| 10 | 8, 2, 9 | sylancr 587 |
. . . . . 6
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹 ↾ 𝐴) ∈ (ℂ ↑pm 𝐴) ↔ ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ ∧ dom (𝐹 ↾ 𝐴) ⊆ 𝐴))) |
| 11 | 7, 10 | mpbid 232 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ ∧ dom (𝐹 ↾ 𝐴) ⊆ 𝐴)) |
| 12 | 11 | simpld 494 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ) |
| 13 | | fco 6760 |
. . . 4
⊢
((ℜ:ℂ⟶ℝ ∧ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ) → (ℜ ∘
(𝐹 ↾ 𝐴)):dom (𝐹 ↾ 𝐴)⟶ℝ) |
| 14 | 1, 12, 13 | sylancr 587 |
. . 3
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ
∘ (𝐹 ↾ 𝐴)):dom (𝐹 ↾ 𝐴)⟶ℝ) |
| 15 | | dmres 6030 |
. . . 4
⊢ dom
(𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) |
| 16 | | id 22 |
. . . . 5
⊢ (𝐴 ∈ dom vol → 𝐴 ∈ dom
vol) |
| 17 | | mbfdm 25661 |
. . . . 5
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
| 18 | | inmbl 25577 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ dom 𝐹 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol) |
| 19 | 16, 17, 18 | syl2anr 597 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol) |
| 20 | 15, 19 | eqeltrid 2845 |
. . 3
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → dom
(𝐹 ↾ 𝐴) ∈ dom
vol) |
| 21 | | resco 6270 |
. . . . . . . 8
⊢ ((ℜ
∘ 𝐹) ↾ 𝐴) = (ℜ ∘ (𝐹 ↾ 𝐴)) |
| 22 | 21 | cnveqi 5885 |
. . . . . . 7
⊢ ◡((ℜ ∘ 𝐹) ↾ 𝐴) = ◡(ℜ ∘ (𝐹 ↾ 𝐴)) |
| 23 | 22 | imaeq1i 6075 |
. . . . . 6
⊢ (◡((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) |
| 24 | | cnvresima 6250 |
. . . . . 6
⊢ (◡((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((◡(ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) |
| 25 | 23, 24 | eqtr3i 2767 |
. . . . 5
⊢ (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) = ((◡(ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) |
| 26 | | mbff 25660 |
. . . . . . . . . 10
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
| 27 | | ismbfcn 25664 |
. . . . . . . . . 10
⊢ (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ
∘ 𝐹) ∈
MblFn))) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℑ ∘ 𝐹)
∈ MblFn))) |
| 29 | 28 | ibi 267 |
. . . . . . . 8
⊢ (𝐹 ∈ MblFn → ((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℑ ∘ 𝐹)
∈ MblFn)) |
| 30 | 29 | simpld 494 |
. . . . . . 7
⊢ (𝐹 ∈ MblFn → (ℜ
∘ 𝐹) ∈
MblFn) |
| 31 | | fco 6760 |
. . . . . . . 8
⊢
((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘
𝐹):dom 𝐹⟶ℝ) |
| 32 | 1, 26, 31 | sylancr 587 |
. . . . . . 7
⊢ (𝐹 ∈ MblFn → (ℜ
∘ 𝐹):dom 𝐹⟶ℝ) |
| 33 | | mbfima 25665 |
. . . . . . 7
⊢ (((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → (◡(ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 34 | 30, 32, 33 | syl2anc 584 |
. . . . . 6
⊢ (𝐹 ∈ MblFn → (◡(ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 35 | | inmbl 25577 |
. . . . . 6
⊢ (((◡(ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → ((◡(ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol) |
| 36 | 34, 35 | sylan 580 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((◡(ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol) |
| 37 | 25, 36 | eqeltrid 2845 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 38 | 37 | adantr 480 |
. . 3
⊢ (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 39 | 22 | imaeq1i 6075 |
. . . . . 6
⊢ (◡((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) |
| 40 | | cnvresima 6250 |
. . . . . 6
⊢ (◡((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((◡(ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) |
| 41 | 39, 40 | eqtr3i 2767 |
. . . . 5
⊢ (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) = ((◡(ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) |
| 42 | | mbfima 25665 |
. . . . . . 7
⊢ (((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → (◡(ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol) |
| 43 | 30, 32, 42 | syl2anc 584 |
. . . . . 6
⊢ (𝐹 ∈ MblFn → (◡(ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol) |
| 44 | | inmbl 25577 |
. . . . . 6
⊢ (((◡(ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → ((◡(ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol) |
| 45 | 43, 44 | sylan 580 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((◡(ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol) |
| 46 | 41, 45 | eqeltrid 2845 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) ∈ dom vol) |
| 47 | 46 | adantr 480 |
. . 3
⊢ (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (◡(ℜ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) ∈ dom vol) |
| 48 | 14, 20, 38, 47 | ismbf2d 25675 |
. 2
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ
∘ (𝐹 ↾ 𝐴)) ∈
MblFn) |
| 49 | | imf 15152 |
. . . 4
⊢
ℑ:ℂ⟶ℝ |
| 50 | | fco 6760 |
. . . 4
⊢
((ℑ:ℂ⟶ℝ ∧ (𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ) → (ℑ ∘
(𝐹 ↾ 𝐴)):dom (𝐹 ↾ 𝐴)⟶ℝ) |
| 51 | 49, 12, 50 | sylancr 587 |
. . 3
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ
∘ (𝐹 ↾ 𝐴)):dom (𝐹 ↾ 𝐴)⟶ℝ) |
| 52 | | resco 6270 |
. . . . . . . 8
⊢ ((ℑ
∘ 𝐹) ↾ 𝐴) = (ℑ ∘ (𝐹 ↾ 𝐴)) |
| 53 | 52 | cnveqi 5885 |
. . . . . . 7
⊢ ◡((ℑ ∘ 𝐹) ↾ 𝐴) = ◡(ℑ ∘ (𝐹 ↾ 𝐴)) |
| 54 | 53 | imaeq1i 6075 |
. . . . . 6
⊢ (◡((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) |
| 55 | | cnvresima 6250 |
. . . . . 6
⊢ (◡((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((◡(ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) |
| 56 | 54, 55 | eqtr3i 2767 |
. . . . 5
⊢ (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) = ((◡(ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) |
| 57 | 29 | simprd 495 |
. . . . . . 7
⊢ (𝐹 ∈ MblFn → (ℑ
∘ 𝐹) ∈
MblFn) |
| 58 | | fco 6760 |
. . . . . . . 8
⊢
((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘
𝐹):dom 𝐹⟶ℝ) |
| 59 | 49, 26, 58 | sylancr 587 |
. . . . . . 7
⊢ (𝐹 ∈ MblFn → (ℑ
∘ 𝐹):dom 𝐹⟶ℝ) |
| 60 | | mbfima 25665 |
. . . . . . 7
⊢
(((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → (◡(ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 61 | 57, 59, 60 | syl2anc 584 |
. . . . . 6
⊢ (𝐹 ∈ MblFn → (◡(ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 62 | | inmbl 25577 |
. . . . . 6
⊢ (((◡(ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → ((◡(ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol) |
| 63 | 61, 62 | sylan 580 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((◡(ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol) |
| 64 | 56, 63 | eqeltrid 2845 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 65 | 64 | adantr 480 |
. . 3
⊢ (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 66 | 53 | imaeq1i 6075 |
. . . . . 6
⊢ (◡((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) |
| 67 | | cnvresima 6250 |
. . . . . 6
⊢ (◡((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((◡(ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) |
| 68 | 66, 67 | eqtr3i 2767 |
. . . . 5
⊢ (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) = ((◡(ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) |
| 69 | | mbfima 25665 |
. . . . . . 7
⊢
(((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → (◡(ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol) |
| 70 | 57, 59, 69 | syl2anc 584 |
. . . . . 6
⊢ (𝐹 ∈ MblFn → (◡(ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol) |
| 71 | | inmbl 25577 |
. . . . . 6
⊢ (((◡(ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → ((◡(ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol) |
| 72 | 70, 71 | sylan 580 |
. . . . 5
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((◡(ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol) |
| 73 | 68, 72 | eqeltrid 2845 |
. . . 4
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) ∈ dom vol) |
| 74 | 73 | adantr 480 |
. . 3
⊢ (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (◡(ℑ ∘ (𝐹 ↾ 𝐴)) “ (-∞(,)𝑥)) ∈ dom vol) |
| 75 | 51, 20, 65, 74 | ismbf2d 25675 |
. 2
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ
∘ (𝐹 ↾ 𝐴)) ∈
MblFn) |
| 76 | | ismbfcn 25664 |
. . 3
⊢ ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ → ((𝐹 ↾ 𝐴) ∈ MblFn ↔ ((ℜ ∘
(𝐹 ↾ 𝐴)) ∈ MblFn ∧ (ℑ
∘ (𝐹 ↾ 𝐴)) ∈
MblFn))) |
| 77 | 12, 76 | syl 17 |
. 2
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹 ↾ 𝐴) ∈ MblFn ↔ ((ℜ ∘
(𝐹 ↾ 𝐴)) ∈ MblFn ∧ (ℑ
∘ (𝐹 ↾ 𝐴)) ∈
MblFn))) |
| 78 | 48, 75, 77 | mpbir2and 713 |
1
⊢ ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹 ↾ 𝐴) ∈ MblFn) |