MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfres Structured version   Visualization version   GIF version

Theorem mbfres 24239
Description: The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
mbfres ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ MblFn)

Proof of Theorem mbfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ref 14465 . . . 4 ℜ:ℂ⟶ℝ
2 simpr 487 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom vol)
3 ismbf1 24219 . . . . . . . . 9 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
43simplbi 500 . . . . . . . 8 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
54adantr 483 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
6 pmresg 8428 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → (𝐹𝐴) ∈ (ℂ ↑pm 𝐴))
72, 5, 6syl2anc 586 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ (ℂ ↑pm 𝐴))
8 cnex 10612 . . . . . . 7 ℂ ∈ V
9 elpm2g 8417 . . . . . . 7 ((ℂ ∈ V ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ (ℂ ↑pm 𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴)))
108, 2, 9sylancr 589 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ (ℂ ↑pm 𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴)))
117, 10mpbid 234 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴))
1211simpld 497 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴):dom (𝐹𝐴)⟶ℂ)
13 fco 6526 . . . 4 ((ℜ:ℂ⟶ℝ ∧ (𝐹𝐴):dom (𝐹𝐴)⟶ℂ) → (ℜ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
141, 12, 13sylancr 589 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
15 dmres 5870 . . . 4 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
16 id 22 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
17 mbfdm 24221 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
18 inmbl 24137 . . . . 5 ((𝐴 ∈ dom vol ∧ dom 𝐹 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol)
1916, 17, 18syl2anr 598 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol)
2015, 19eqeltrid 2917 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → dom (𝐹𝐴) ∈ dom vol)
21 resco 6098 . . . . . . . 8 ((ℜ ∘ 𝐹) ↾ 𝐴) = (ℜ ∘ (𝐹𝐴))
2221cnveqi 5740 . . . . . . 7 ((ℜ ∘ 𝐹) ↾ 𝐴) = (ℜ ∘ (𝐹𝐴))
2322imaeq1i 5921 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞))
24 cnvresima 6082 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
2523, 24eqtr3i 2846 . . . . 5 ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) = (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
26 mbff 24220 . . . . . . . . . 10 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
27 ismbfcn 24224 . . . . . . . . . 10 (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
2826, 27syl 17 . . . . . . . . 9 (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
2928ibi 269 . . . . . . . 8 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
3029simpld 497 . . . . . . 7 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹) ∈ MblFn)
31 fco 6526 . . . . . . . 8 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
321, 26, 31sylancr 589 . . . . . . 7 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
33 mbfima 24225 . . . . . . 7 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
3430, 32, 33syl2anc 586 . . . . . 6 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
35 inmbl 24137 . . . . . 6 ((((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
3634, 35sylan 582 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
3725, 36eqeltrid 2917 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
3837adantr 483 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
3922imaeq1i 5921 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥))
40 cnvresima 6082 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
4139, 40eqtr3i 2846 . . . . 5 ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) = (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
42 mbfima 24225 . . . . . . 7 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
4330, 32, 42syl2anc 586 . . . . . 6 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
44 inmbl 24137 . . . . . 6 ((((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
4543, 44sylan 582 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
4641, 45eqeltrid 2917 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
4746adantr 483 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
4814, 20, 38, 47ismbf2d 24235 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ ∘ (𝐹𝐴)) ∈ MblFn)
49 imf 14466 . . . 4 ℑ:ℂ⟶ℝ
50 fco 6526 . . . 4 ((ℑ:ℂ⟶ℝ ∧ (𝐹𝐴):dom (𝐹𝐴)⟶ℂ) → (ℑ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
5149, 12, 50sylancr 589 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
52 resco 6098 . . . . . . . 8 ((ℑ ∘ 𝐹) ↾ 𝐴) = (ℑ ∘ (𝐹𝐴))
5352cnveqi 5740 . . . . . . 7 ((ℑ ∘ 𝐹) ↾ 𝐴) = (ℑ ∘ (𝐹𝐴))
5453imaeq1i 5921 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞))
55 cnvresima 6082 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
5654, 55eqtr3i 2846 . . . . 5 ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) = (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
5729simprd 498 . . . . . . 7 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹) ∈ MblFn)
58 fco 6526 . . . . . . . 8 ((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
5949, 26, 58sylancr 589 . . . . . . 7 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
60 mbfima 24225 . . . . . . 7 (((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
6157, 59, 60syl2anc 586 . . . . . 6 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
62 inmbl 24137 . . . . . 6 ((((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
6361, 62sylan 582 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
6456, 63eqeltrid 2917 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
6564adantr 483 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
6653imaeq1i 5921 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥))
67 cnvresima 6082 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
6866, 67eqtr3i 2846 . . . . 5 ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) = (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
69 mbfima 24225 . . . . . . 7 (((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
7057, 59, 69syl2anc 586 . . . . . 6 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
71 inmbl 24137 . . . . . 6 ((((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
7270, 71sylan 582 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
7368, 72eqeltrid 2917 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
7473adantr 483 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
7551, 20, 65, 74ismbf2d 24235 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ ∘ (𝐹𝐴)) ∈ MblFn)
76 ismbfcn 24224 . . 3 ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ → ((𝐹𝐴) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐴)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐴)) ∈ MblFn)))
7712, 76syl 17 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐴)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐴)) ∈ MblFn)))
7848, 75, 77mpbir2and 711 1 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wral 3138  Vcvv 3495  cin 3935  wss 3936  ccnv 5549  dom cdm 5550  ran crn 5551  cres 5552  cima 5553  ccom 5554  wf 6346  (class class class)co 7150  pm cpm 8401  cc 10529  cr 10530  +∞cpnf 10666  -∞cmnf 10667  (,)cioo 12732  cre 14450  cim 14451  volcvol 24058  MblFncmbf 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-xmet 20532  df-met 20533  df-ovol 24059  df-vol 24060  df-mbf 24214
This theorem is referenced by:  mbfadd  24256  mbfsub  24257  mbfmullem2  24319  mbfmul  24321  itg2cnlem1  24356  iblss  24399  mbfposadd  34933  ftc1cnnclem  34959  ftc1anclem8  34968
  Copyright terms: Public domain W3C validator