MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfres Structured version   Visualization version   GIF version

Theorem mbfres 25698
Description: The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
mbfres ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ MblFn)

Proof of Theorem mbfres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ref 15161 . . . 4 ℜ:ℂ⟶ℝ
2 simpr 484 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom vol)
3 ismbf1 25678 . . . . . . . . 9 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
43simplbi 497 . . . . . . . 8 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
54adantr 480 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
6 pmresg 8928 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → (𝐹𝐴) ∈ (ℂ ↑pm 𝐴))
72, 5, 6syl2anc 583 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ (ℂ ↑pm 𝐴))
8 cnex 11265 . . . . . . 7 ℂ ∈ V
9 elpm2g 8902 . . . . . . 7 ((ℂ ∈ V ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ (ℂ ↑pm 𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴)))
108, 2, 9sylancr 586 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ (ℂ ↑pm 𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴)))
117, 10mpbid 232 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ ∧ dom (𝐹𝐴) ⊆ 𝐴))
1211simpld 494 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴):dom (𝐹𝐴)⟶ℂ)
13 fco 6771 . . . 4 ((ℜ:ℂ⟶ℝ ∧ (𝐹𝐴):dom (𝐹𝐴)⟶ℂ) → (ℜ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
141, 12, 13sylancr 586 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
15 dmres 6041 . . . 4 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
16 id 22 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
17 mbfdm 25680 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
18 inmbl 25596 . . . . 5 ((𝐴 ∈ dom vol ∧ dom 𝐹 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol)
1916, 17, 18syl2anr 596 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐴 ∩ dom 𝐹) ∈ dom vol)
2015, 19eqeltrid 2848 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → dom (𝐹𝐴) ∈ dom vol)
21 resco 6281 . . . . . . . 8 ((ℜ ∘ 𝐹) ↾ 𝐴) = (ℜ ∘ (𝐹𝐴))
2221cnveqi 5899 . . . . . . 7 ((ℜ ∘ 𝐹) ↾ 𝐴) = (ℜ ∘ (𝐹𝐴))
2322imaeq1i 6086 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞))
24 cnvresima 6261 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
2523, 24eqtr3i 2770 . . . . 5 ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) = (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
26 mbff 25679 . . . . . . . . . 10 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
27 ismbfcn 25683 . . . . . . . . . 10 (𝐹:dom 𝐹⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
2826, 27syl 17 . . . . . . . . 9 (𝐹 ∈ MblFn → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
2928ibi 267 . . . . . . . 8 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
3029simpld 494 . . . . . . 7 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹) ∈ MblFn)
31 fco 6771 . . . . . . . 8 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
321, 26, 31sylancr 586 . . . . . . 7 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
33 mbfima 25684 . . . . . . 7 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
3430, 32, 33syl2anc 583 . . . . . 6 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
35 inmbl 25596 . . . . . 6 ((((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
3634, 35sylan 579 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
3725, 36eqeltrid 2848 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
3837adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℜ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
3922imaeq1i 6086 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥))
40 cnvresima 6261 . . . . . 6 (((ℜ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
4139, 40eqtr3i 2770 . . . . 5 ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) = (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
42 mbfima 25684 . . . . . . 7 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
4330, 32, 42syl2anc 583 . . . . . 6 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
44 inmbl 25596 . . . . . 6 ((((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
4543, 44sylan 579 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
4641, 45eqeltrid 2848 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
4746adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℜ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
4814, 20, 38, 47ismbf2d 25694 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℜ ∘ (𝐹𝐴)) ∈ MblFn)
49 imf 15162 . . . 4 ℑ:ℂ⟶ℝ
50 fco 6771 . . . 4 ((ℑ:ℂ⟶ℝ ∧ (𝐹𝐴):dom (𝐹𝐴)⟶ℂ) → (ℑ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
5149, 12, 50sylancr 586 . . 3 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ ∘ (𝐹𝐴)):dom (𝐹𝐴)⟶ℝ)
52 resco 6281 . . . . . . . 8 ((ℑ ∘ 𝐹) ↾ 𝐴) = (ℑ ∘ (𝐹𝐴))
5352cnveqi 5899 . . . . . . 7 ((ℑ ∘ 𝐹) ↾ 𝐴) = (ℑ ∘ (𝐹𝐴))
5453imaeq1i 6086 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞))
55 cnvresima 6261 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (𝑥(,)+∞)) = (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
5654, 55eqtr3i 2770 . . . . 5 ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) = (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴)
5729simprd 495 . . . . . . 7 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹) ∈ MblFn)
58 fco 6771 . . . . . . . 8 ((ℑ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
5949, 26, 58sylancr 586 . . . . . . 7 (𝐹 ∈ MblFn → (ℑ ∘ 𝐹):dom 𝐹⟶ℝ)
60 mbfima 25684 . . . . . . 7 (((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
6157, 59, 60syl2anc 583 . . . . . 6 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol)
62 inmbl 25596 . . . . . 6 ((((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
6361, 62sylan 579 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (𝑥(,)+∞)) ∩ 𝐴) ∈ dom vol)
6456, 63eqeltrid 2848 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
6564adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℑ ∘ (𝐹𝐴)) “ (𝑥(,)+∞)) ∈ dom vol)
6653imaeq1i 6086 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥))
67 cnvresima 6261 . . . . . 6 (((ℑ ∘ 𝐹) ↾ 𝐴) “ (-∞(,)𝑥)) = (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
6866, 67eqtr3i 2770 . . . . 5 ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) = (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴)
69 mbfima 25684 . . . . . . 7 (((ℑ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹):dom 𝐹⟶ℝ) → ((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
7057, 59, 69syl2anc 583 . . . . . 6 (𝐹 ∈ MblFn → ((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol)
71 inmbl 25596 . . . . . 6 ((((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
7270, 71sylan 579 . . . . 5 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (((ℑ ∘ 𝐹) “ (-∞(,)𝑥)) ∩ 𝐴) ∈ dom vol)
7368, 72eqeltrid 2848 . . . 4 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
7473adantr 480 . . 3 (((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → ((ℑ ∘ (𝐹𝐴)) “ (-∞(,)𝑥)) ∈ dom vol)
7551, 20, 65, 74ismbf2d 25694 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (ℑ ∘ (𝐹𝐴)) ∈ MblFn)
76 ismbfcn 25683 . . 3 ((𝐹𝐴):dom (𝐹𝐴)⟶ℂ → ((𝐹𝐴) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐴)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐴)) ∈ MblFn)))
7712, 76syl 17 . 2 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝐹𝐴) ∈ MblFn ↔ ((ℜ ∘ (𝐹𝐴)) ∈ MblFn ∧ (ℑ ∘ (𝐹𝐴)) ∈ MblFn)))
7848, 75, 77mpbir2and 712 1 ((𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol) → (𝐹𝐴) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  wf 6569  (class class class)co 7448  pm cpm 8885  cc 11182  cr 11183  +∞cpnf 11321  -∞cmnf 11322  (,)cioo 13407  cre 15146  cim 15147  volcvol 25517  MblFncmbf 25668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673
This theorem is referenced by:  mbfadd  25715  mbfsub  25716  mbfmullem2  25779  mbfmul  25781  itg2cnlem1  25816  iblss  25860  mbfposadd  37627  ftc1cnnclem  37651  ftc1anclem8  37660
  Copyright terms: Public domain W3C validator