Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfdmssre Structured version   Visualization version   GIF version

Theorem mbfdmssre 46122
Description: The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
mbfdmssre (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ)

Proof of Theorem mbfdmssre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbf1 25553 . . 3 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
21simplbi 497 . 2 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
3 elpmi2 45346 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
42, 3syl 17 1 (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wral 3048  wss 3898  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  ccom 5623  (class class class)co 7352  pm cpm 8757  cc 11011  cr 11012  (,)cioo 13247  cre 15006  cim 15007  volcvol 25392  MblFncmbf 25543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-pm 8759  df-mbf 25548
This theorem is referenced by:  mbfresmf  46861
  Copyright terms: Public domain W3C validator