| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbff | Structured version Visualization version GIF version | ||
| Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbff | ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf1 25572 | . . 3 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 3 | cnex 11098 | . . . 4 ⊢ ℂ ∈ V | |
| 4 | reex 11108 | . . . 4 ⊢ ℝ ∈ V | |
| 5 | 3, 4 | elpm2 8808 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ) |
| 7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 ∘ ccom 5625 ⟶wf 6485 (class class class)co 7355 ↑pm cpm 8760 ℂcc 11015 ℝcr 11016 (,)cioo 13252 ℜcre 15011 ℑcim 15012 volcvol 25411 MblFncmbf 25562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-pm 8762 df-mbf 25567 |
| This theorem is referenced by: mbfdm 25574 mbfmptcl 25584 mbfres 25592 mbfimaopnlem 25603 mbfadd 25609 mbfsub 25610 mbfmul 25674 iblcnlem 25737 bddmulibl 25787 bddibl 25788 bddiblnc 25790 mbfresmf 46899 |
| Copyright terms: Public domain | W3C validator |