MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbff Structured version   Visualization version   GIF version

Theorem mbff 23612
Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbff (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)

Proof of Theorem mbff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbf1 23611 . . 3 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
21simplbi 487 . 2 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 10305 . . . 4 ℂ ∈ V
4 reex 10315 . . . 4 ℝ ∈ V
53, 4elpm2 8127 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simplbi 487 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
72, 6syl 17 1 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 2157  wral 3103  wss 3776  ccnv 5317  dom cdm 5318  ran crn 5319  cima 5321  ccom 5322  wf 6100  (class class class)co 6877  pm cpm 8096  cc 10222  cr 10223  (,)cioo 12396  cre 14063  cim 14064  volcvol 23450  MblFncmbf 23601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-br 4852  df-opab 4914  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-fv 6112  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-pm 8098  df-mbf 23606
This theorem is referenced by:  mbfdm  23613  mbfmptcl  23623  mbfres  23631  mbfimaopnlem  23642  mbfadd  23648  mbfsub  23649  mbfmul  23713  iblcnlem  23775  bddmulibl  23825  bddibl  23826  bddiblnc  33794  mbfresmf  41431
  Copyright terms: Public domain W3C validator