Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbff | Structured version Visualization version GIF version |
Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbff | ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf1 24693 | . . 3 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ)) |
3 | cnex 10883 | . . . 4 ⊢ ℂ ∈ V | |
4 | reex 10893 | . . . 4 ⊢ ℝ ∈ V | |
5 | 3, 4 | elpm2 8620 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ) |
7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 ∘ ccom 5584 ⟶wf 6414 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℝcr 10801 (,)cioo 13008 ℜcre 14736 ℑcim 14737 volcvol 24532 MblFncmbf 24683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-mbf 24688 |
This theorem is referenced by: mbfdm 24695 mbfmptcl 24705 mbfres 24713 mbfimaopnlem 24724 mbfadd 24730 mbfsub 24731 mbfmul 24796 iblcnlem 24858 bddmulibl 24908 bddibl 24909 bddiblnc 24911 mbfresmf 44162 |
Copyright terms: Public domain | W3C validator |