MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbff Structured version   Visualization version   GIF version

Theorem mbff 25578
Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbff (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)

Proof of Theorem mbff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbf1 25577 . . 3 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
21simplbi 497 . 2 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 11210 . . . 4 ℂ ∈ V
4 reex 11220 . . . 4 ℝ ∈ V
53, 4elpm2 8888 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simplbi 497 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
72, 6syl 17 1 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051  wss 3926  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657  ccom 5658  wf 6527  (class class class)co 7405  pm cpm 8841  cc 11127  cr 11128  (,)cioo 13362  cre 15116  cim 15117  volcvol 25416  MblFncmbf 25567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pm 8843  df-mbf 25572
This theorem is referenced by:  mbfdm  25579  mbfmptcl  25589  mbfres  25597  mbfimaopnlem  25608  mbfadd  25614  mbfsub  25615  mbfmul  25679  iblcnlem  25742  bddmulibl  25792  bddibl  25793  bddiblnc  25795  mbfresmf  46768
  Copyright terms: Public domain W3C validator