MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbff Structured version   Visualization version   GIF version

Theorem mbff 25133
Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbff (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)

Proof of Theorem mbff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ismbf1 25132 . . 3 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
21simplbi 498 . 2 (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ))
3 cnex 11187 . . . 4 ℂ ∈ V
4 reex 11197 . . . 4 ℝ ∈ V
53, 4elpm2 8864 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
65simplbi 498 . 2 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
72, 6syl 17 1 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3061  wss 3947  ccnv 5674  dom cdm 5675  ran crn 5676  cima 5678  ccom 5679  wf 6536  (class class class)co 7405  pm cpm 8817  cc 11104  cr 11105  (,)cioo 13320  cre 15040  cim 15041  volcvol 24971  MblFncmbf 25122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pm 8819  df-mbf 25127
This theorem is referenced by:  mbfdm  25134  mbfmptcl  25144  mbfres  25152  mbfimaopnlem  25163  mbfadd  25169  mbfsub  25170  mbfmul  25235  iblcnlem  25297  bddmulibl  25347  bddibl  25348  bddiblnc  25350  mbfresmf  45441
  Copyright terms: Public domain W3C validator