| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbff | Structured version Visualization version GIF version | ||
| Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbff | ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf1 25532 | . . 3 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
| 2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ MblFn → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 3 | cnex 11156 | . . . 4 ⊢ ℂ ∈ V | |
| 4 | reex 11166 | . . . 4 ⊢ ℝ ∈ V | |
| 5 | 3, 4 | elpm2 8850 | . . 3 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ) |
| 7 | 2, 6 | syl 17 | 1 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 (class class class)co 7390 ↑pm cpm 8803 ℂcc 11073 ℝcr 11074 (,)cioo 13313 ℜcre 15070 ℑcim 15071 volcvol 25371 MblFncmbf 25522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-mbf 25527 |
| This theorem is referenced by: mbfdm 25534 mbfmptcl 25544 mbfres 25552 mbfimaopnlem 25563 mbfadd 25569 mbfsub 25570 mbfmul 25634 iblcnlem 25697 bddmulibl 25747 bddibl 25748 bddiblnc 25750 mbfresmf 46744 |
| Copyright terms: Public domain | W3C validator |