MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmbf Structured version   Visualization version   GIF version

Theorem cnmbf 25694
Description: A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
cnmbf ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → 𝐹 ∈ MblFn)

Proof of Theorem cnmbf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cncff 24919 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
2 mblss 25566 . . 3 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3 cnex 11236 . . . 4 ℂ ∈ V
4 reex 11246 . . . 4 ℝ ∈ V
5 elpm2r 8885 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
63, 4, 5mpanl12 702 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
71, 2, 6syl2anr 597 . 2 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
8 simpll 767 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ∈ dom vol)
9 simplr 769 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐹 ∈ (𝐴cn→ℂ))
10 recncf 24928 . . . . . . . . 9 ℜ ∈ (ℂ–cn→ℝ)
1110a1i 11 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ℜ ∈ (ℂ–cn→ℝ))
129, 11cncfco 24933 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐹) ∈ (𝐴cn→ℝ))
132ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ⊆ ℝ)
14 ax-resscn 11212 . . . . . . . . . 10 ℝ ⊆ ℂ
1513, 14sstrdi 3996 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ⊆ ℂ)
16 eqid 2737 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
17 eqid 2737 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
18 tgioo4 24826 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1916, 17, 18cncfcn 24936 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐴cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran (,))))
2015, 14, 19sylancl 586 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (𝐴cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran (,))))
21 eqid 2737 . . . . . . . . . . 11 (topGen‘ran (,)) = (topGen‘ran (,))
2216, 21rerest 24825 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
2313, 22syl 17 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
2423oveq1d 7446 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
2520, 24eqtrd 2777 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (𝐴cn→ℝ) = (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
2612, 25eleqtrd 2843 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
27 retopbas 24781 . . . . . . . 8 ran (,) ∈ TopBases
28 bastg 22973 . . . . . . . 8 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
2927, 28ax-mp 5 . . . . . . 7 ran (,) ⊆ (topGen‘ran (,))
30 simpr 484 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝑥 ∈ ran (,))
3129, 30sselid 3981 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝑥 ∈ (topGen‘ran (,)))
32 cnima 23273 . . . . . 6 (((ℜ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
3326, 31, 32syl2anc 584 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
34 eqid 2737 . . . . . 6 ((topGen‘ran (,)) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)
3534subopnmbl 25639 . . . . 5 ((𝐴 ∈ dom vol ∧ ((ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
368, 33, 35syl2anc 584 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
37 imcncf 24929 . . . . . . . . 9 ℑ ∈ (ℂ–cn→ℝ)
3837a1i 11 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ℑ ∈ (ℂ–cn→ℝ))
399, 38cncfco 24933 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐹) ∈ (𝐴cn→ℝ))
4039, 25eleqtrd 2843 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
41 cnima 23273 . . . . . 6 (((ℑ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
4240, 31, 41syl2anc 584 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
4334subopnmbl 25639 . . . . 5 ((𝐴 ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
448, 42, 43syl2anc 584 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
4536, 44jca 511 . . 3 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
4645ralrimiva 3146 . 2 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
47 ismbf1 25659 . 2 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
487, 46, 47sylanbrc 583 1 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  pm cpm 8867  cc 11153  cr 11154  (,)cioo 13387  cre 15136  cim 15137  t crest 17465  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  TopBasesctb 22952   Cn ccn 23232  cnccncf 24902  volcvol 25498  MblFncmbf 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-cmp 23395  df-xms 24330  df-ms 24331  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654
This theorem is referenced by:  cniccibl  25876  cnicciblnc  25878  ftc2re  34613  ftc1cnnclem  37698  ftc2nc  37709  3factsumint1  42022  cnioobibld  43226  cnbdibl  45977  fourierdlem16  46138  fourierdlem21  46143  fourierdlem22  46144  fourierdlem83  46204
  Copyright terms: Public domain W3C validator