MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmbf Structured version   Visualization version   GIF version

Theorem cnmbf 25593
Description: A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
cnmbf ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → 𝐹 ∈ MblFn)

Proof of Theorem cnmbf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cncff 24819 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
2 mblss 25465 . . 3 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3 cnex 11125 . . . 4 ℂ ∈ V
4 reex 11135 . . . 4 ℝ ∈ V
5 elpm2r 8795 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
63, 4, 5mpanl12 702 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
71, 2, 6syl2anr 597 . 2 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
8 simpll 766 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ∈ dom vol)
9 simplr 768 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐹 ∈ (𝐴cn→ℂ))
10 recncf 24828 . . . . . . . . 9 ℜ ∈ (ℂ–cn→ℝ)
1110a1i 11 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ℜ ∈ (ℂ–cn→ℝ))
129, 11cncfco 24833 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐹) ∈ (𝐴cn→ℝ))
132ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ⊆ ℝ)
14 ax-resscn 11101 . . . . . . . . . 10 ℝ ⊆ ℂ
1513, 14sstrdi 3956 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ⊆ ℂ)
16 eqid 2729 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
17 eqid 2729 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t 𝐴) = ((TopOpen‘ℂfld) ↾t 𝐴)
18 tgioo4 24726 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1916, 17, 18cncfcn 24836 . . . . . . . . 9 ((𝐴 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝐴cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran (,))))
2015, 14, 19sylancl 586 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (𝐴cn→ℝ) = (((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran (,))))
21 eqid 2729 . . . . . . . . . . 11 (topGen‘ran (,)) = (topGen‘ran (,))
2216, 21rerest 24725 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
2313, 22syl 17 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴))
2423oveq1d 7384 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran (,))) = (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
2520, 24eqtrd 2764 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (𝐴cn→ℝ) = (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
2612, 25eleqtrd 2830 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
27 retopbas 24681 . . . . . . . 8 ran (,) ∈ TopBases
28 bastg 22886 . . . . . . . 8 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
2927, 28ax-mp 5 . . . . . . 7 ran (,) ⊆ (topGen‘ran (,))
30 simpr 484 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝑥 ∈ ran (,))
3129, 30sselid 3941 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝑥 ∈ (topGen‘ran (,)))
32 cnima 23185 . . . . . 6 (((ℜ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
3326, 31, 32syl2anc 584 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
34 eqid 2729 . . . . . 6 ((topGen‘ran (,)) ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)
3534subopnmbl 25538 . . . . 5 ((𝐴 ∈ dom vol ∧ ((ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
368, 33, 35syl2anc 584 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
37 imcncf 24829 . . . . . . . . 9 ℑ ∈ (ℂ–cn→ℝ)
3837a1i 11 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ℑ ∈ (ℂ–cn→ℝ))
399, 38cncfco 24833 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐹) ∈ (𝐴cn→ℝ))
4039, 25eleqtrd 2830 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))))
41 cnima 23185 . . . . . 6 (((ℑ ∘ 𝐹) ∈ (((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
4240, 31, 41syl2anc 584 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴))
4334subopnmbl 25538 . . . . 5 ((𝐴 ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,)) ↾t 𝐴)) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
448, 42, 43syl2anc 584 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
4536, 44jca 511 . . 3 (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
4645ralrimiva 3125 . 2 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
47 ismbf1 25558 . 2 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
487, 46, 47sylanbrc 583 1 ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴cn→ℂ)) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  cr 11043  (,)cioo 13282  cre 15039  cim 15040  t crest 17359  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21296  TopBasesctb 22865   Cn ccn 23144  cnccncf 24802  volcvol 25397  MblFncmbf 25548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-cnp 23148  df-cmp 23307  df-xms 24241  df-ms 24242  df-cncf 24804  df-ovol 25398  df-vol 25399  df-mbf 25553
This theorem is referenced by:  cniccibl  25775  cnicciblnc  25777  ftc2re  34582  ftc1cnnclem  37678  ftc2nc  37689  3factsumint1  42002  cnioobibld  43196  cnbdibl  45953  fourierdlem16  46114  fourierdlem21  46119  fourierdlem22  46120  fourierdlem83  46180
  Copyright terms: Public domain W3C validator