Step | Hyp | Ref
| Expression |
1 | | cncff 23962 |
. . 3
⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) |
2 | | mblss 24600 |
. . 3
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
3 | | cnex 10883 |
. . . 4
⊢ ℂ
∈ V |
4 | | reex 10893 |
. . . 4
⊢ ℝ
∈ V |
5 | | elpm2r 8591 |
. . . 4
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
6 | 3, 4, 5 | mpanl12 698 |
. . 3
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
7 | 1, 2, 6 | syl2anr 596 |
. 2
⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
8 | | simpll 763 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ∈ dom vol) |
9 | | simplr 765 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐹 ∈ (𝐴–cn→ℂ)) |
10 | | recncf 23971 |
. . . . . . . . 9
⊢ ℜ
∈ (ℂ–cn→ℝ) |
11 | 10 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ℜ ∈
(ℂ–cn→ℝ)) |
12 | 9, 11 | cncfco 23976 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐹) ∈ (𝐴–cn→ℝ)) |
13 | 2 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ⊆ ℝ) |
14 | | ax-resscn 10859 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
15 | 13, 14 | sstrdi 3929 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝐴 ⊆ ℂ) |
16 | | eqid 2738 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
17 | | eqid 2738 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t 𝐴) =
((TopOpen‘ℂfld) ↾t 𝐴) |
18 | 16 | tgioo2 23872 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
19 | 16, 17, 18 | cncfcn 23979 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℂ ∧ ℝ
⊆ ℂ) → (𝐴–cn→ℝ) =
(((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran
(,)))) |
20 | 15, 14, 19 | sylancl 585 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (𝐴–cn→ℝ) =
(((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran
(,)))) |
21 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
22 | 16, 21 | rerest 23873 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ →
((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,))
↾t 𝐴)) |
23 | 13, 22 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) →
((TopOpen‘ℂfld) ↾t 𝐴) = ((topGen‘ran (,))
↾t 𝐴)) |
24 | 23 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) →
(((TopOpen‘ℂfld) ↾t 𝐴) Cn (topGen‘ran (,))) =
(((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran
(,)))) |
25 | 20, 24 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (𝐴–cn→ℝ) = (((topGen‘ran (,))
↾t 𝐴) Cn
(topGen‘ran (,)))) |
26 | 12, 25 | eleqtrd 2841 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℜ ∘ 𝐹) ∈ (((topGen‘ran
(,)) ↾t 𝐴)
Cn (topGen‘ran (,)))) |
27 | | retopbas 23830 |
. . . . . . . 8
⊢ ran (,)
∈ TopBases |
28 | | bastg 22024 |
. . . . . . . 8
⊢ (ran (,)
∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) |
29 | 27, 28 | ax-mp 5 |
. . . . . . 7
⊢ ran (,)
⊆ (topGen‘ran (,)) |
30 | | simpr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝑥 ∈ ran (,)) |
31 | 29, 30 | sselid 3915 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → 𝑥 ∈ (topGen‘ran
(,))) |
32 | | cnima 22324 |
. . . . . 6
⊢ (((ℜ
∘ 𝐹) ∈
(((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,)))
→ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,))
↾t 𝐴)) |
33 | 26, 31, 32 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,))
↾t 𝐴)) |
34 | | eqid 2738 |
. . . . . 6
⊢
((topGen‘ran (,)) ↾t 𝐴) = ((topGen‘ran (,))
↾t 𝐴) |
35 | 34 | subopnmbl 24673 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,))
↾t 𝐴))
→ (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
36 | 8, 33, 35 | syl2anc 583 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
37 | | imcncf 23972 |
. . . . . . . . 9
⊢ ℑ
∈ (ℂ–cn→ℝ) |
38 | 37 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ℑ ∈
(ℂ–cn→ℝ)) |
39 | 9, 38 | cncfco 23976 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘
𝐹) ∈ (𝐴–cn→ℝ)) |
40 | 39, 25 | eleqtrd 2841 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (ℑ ∘
𝐹) ∈
(((topGen‘ran (,)) ↾t 𝐴) Cn (topGen‘ran
(,)))) |
41 | | cnima 22324 |
. . . . . 6
⊢
(((ℑ ∘ 𝐹) ∈ (((topGen‘ran (,))
↾t 𝐴) Cn
(topGen‘ran (,))) ∧ 𝑥 ∈ (topGen‘ran (,))) → (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,))
↾t 𝐴)) |
42 | 40, 31, 41 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,))
↾t 𝐴)) |
43 | 34 | subopnmbl 24673 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ ((topGen‘ran (,))
↾t 𝐴))
→ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
44 | 8, 42, 43 | syl2anc 583 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
45 | 36, 44 | jca 511 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) ∧ 𝑥 ∈ ran (,)) → ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
46 | 45 | ralrimiva 3107 |
. 2
⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
47 | | ismbf1 24693 |
. 2
⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ
↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
48 | 7, 46, 47 | sylanbrc 582 |
1
⊢ ((𝐴 ∈ dom vol ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → 𝐹 ∈ MblFn) |