![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismbfcn | Structured version Visualization version GIF version |
Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ismbfcn | ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfdm 24990 | . . 3 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
2 | fdm 6677 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
3 | 2 | eleq1d 2822 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
4 | 1, 3 | imbitrid 243 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol)) |
5 | mbfdm 24990 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ∈ MblFn → dom (ℜ ∘ 𝐹) ∈ dom vol) | |
6 | 5 | adantr 481 | . . 3 ⊢ (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → dom (ℜ ∘ 𝐹) ∈ dom vol) |
7 | ref 14997 | . . . . . 6 ⊢ ℜ:ℂ⟶ℝ | |
8 | fco 6692 | . . . . . 6 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ) | |
9 | 7, 8 | mpan 688 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
10 | 9 | fdmd 6679 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom (ℜ ∘ 𝐹) = 𝐴) |
11 | 10 | eleq1d 2822 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom (ℜ ∘ 𝐹) ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
12 | 6, 11 | imbitrid 243 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → 𝐴 ∈ dom vol)) |
13 | ismbf1 24988 | . . . 4 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
14 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
15 | ismbf 24992 | . . . . . . . 8 ⊢ ((ℜ ∘ 𝐹):𝐴⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
17 | imf 14998 | . . . . . . . . . 10 ⊢ ℑ:ℂ⟶ℝ | |
18 | fco 6692 | . . . . . . . . . 10 ⊢ ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ) | |
19 | 17, 18 | mpan 688 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶ℂ → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
20 | 19 | adantr 481 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
21 | ismbf 24992 | . . . . . . . 8 ⊢ ((ℑ ∘ 𝐹):𝐴⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
23 | 16, 22 | anbi12d 631 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
24 | r19.26 3114 | . . . . . 6 ⊢ (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
25 | 23, 24 | bitr4di 288 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
26 | mblss 24895 | . . . . . . 7 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
27 | cnex 11132 | . . . . . . . 8 ⊢ ℂ ∈ V | |
28 | reex 11142 | . . . . . . . 8 ⊢ ℝ ∈ V | |
29 | elpm2r 8783 | . . . . . . . 8 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
30 | 27, 28, 29 | mpanl12 700 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
31 | 26, 30 | sylan2 593 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
32 | 31 | biantrurd 533 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
33 | 25, 32 | bitrd 278 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
34 | 13, 33 | bitr4id 289 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
35 | 34 | ex 413 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))) |
36 | 4, 12, 35 | pm5.21ndd 380 | 1 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 ⊆ wss 3910 ◡ccnv 5632 dom cdm 5633 ran crn 5634 “ cima 5636 ∘ ccom 5637 ⟶wf 6492 (class class class)co 7357 ↑pm cpm 8766 ℂcc 11049 ℝcr 11050 (,)cioo 13264 ℜcre 14982 ℑcim 14983 volcvol 24827 MblFncmbf 24978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-xadd 13034 df-ioo 13268 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-xmet 20789 df-met 20790 df-ovol 24828 df-vol 24829 df-mbf 24983 |
This theorem is referenced by: ismbfcn2 25002 mbfres 25008 mbfimaopnlem 25019 mbfresfi 36124 itgaddnc 36138 itgmulc2nc 36146 ftc1anclem5 36155 mbfres2cn 44189 |
Copyright terms: Public domain | W3C validator |