Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismbfcn | Structured version Visualization version GIF version |
Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ismbfcn | ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfdm 24695 | . . 3 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
2 | fdm 6593 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
3 | 2 | eleq1d 2823 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
4 | 1, 3 | syl5ib 243 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol)) |
5 | mbfdm 24695 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ∈ MblFn → dom (ℜ ∘ 𝐹) ∈ dom vol) | |
6 | 5 | adantr 480 | . . 3 ⊢ (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → dom (ℜ ∘ 𝐹) ∈ dom vol) |
7 | ref 14751 | . . . . . 6 ⊢ ℜ:ℂ⟶ℝ | |
8 | fco 6608 | . . . . . 6 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ) | |
9 | 7, 8 | mpan 686 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
10 | 9 | fdmd 6595 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom (ℜ ∘ 𝐹) = 𝐴) |
11 | 10 | eleq1d 2823 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom (ℜ ∘ 𝐹) ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
12 | 6, 11 | syl5ib 243 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → 𝐴 ∈ dom vol)) |
13 | ismbf1 24693 | . . . 4 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
14 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
15 | ismbf 24697 | . . . . . . . 8 ⊢ ((ℜ ∘ 𝐹):𝐴⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
17 | imf 14752 | . . . . . . . . . 10 ⊢ ℑ:ℂ⟶ℝ | |
18 | fco 6608 | . . . . . . . . . 10 ⊢ ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ) | |
19 | 17, 18 | mpan 686 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶ℂ → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
20 | 19 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
21 | ismbf 24697 | . . . . . . . 8 ⊢ ((ℑ ∘ 𝐹):𝐴⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
23 | 16, 22 | anbi12d 630 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
24 | r19.26 3094 | . . . . . 6 ⊢ (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
25 | 23, 24 | bitr4di 288 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
26 | mblss 24600 | . . . . . . 7 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
27 | cnex 10883 | . . . . . . . 8 ⊢ ℂ ∈ V | |
28 | reex 10893 | . . . . . . . 8 ⊢ ℝ ∈ V | |
29 | elpm2r 8591 | . . . . . . . 8 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
30 | 27, 28, 29 | mpanl12 698 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
31 | 26, 30 | sylan2 592 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
32 | 31 | biantrurd 532 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
33 | 25, 32 | bitrd 278 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
34 | 13, 33 | bitr4id 289 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
35 | 34 | ex 412 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))) |
36 | 4, 12, 35 | pm5.21ndd 380 | 1 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 ∘ ccom 5584 ⟶wf 6414 (class class class)co 7255 ↑pm cpm 8574 ℂcc 10800 ℝcr 10801 (,)cioo 13008 ℜcre 14736 ℑcim 14737 volcvol 24532 MblFncmbf 24683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 |
This theorem is referenced by: ismbfcn2 24707 mbfres 24713 mbfimaopnlem 24724 mbfresfi 35750 itgaddnc 35764 itgmulc2nc 35772 ftc1anclem5 35781 mbfres2cn 43389 |
Copyright terms: Public domain | W3C validator |