![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismbfcn | Structured version Visualization version GIF version |
Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
ismbfcn | ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfdm 25680 | . . 3 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
2 | fdm 6756 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
3 | 2 | eleq1d 2829 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
4 | 1, 3 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol)) |
5 | mbfdm 25680 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ∈ MblFn → dom (ℜ ∘ 𝐹) ∈ dom vol) | |
6 | 5 | adantr 480 | . . 3 ⊢ (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → dom (ℜ ∘ 𝐹) ∈ dom vol) |
7 | ref 15161 | . . . . . 6 ⊢ ℜ:ℂ⟶ℝ | |
8 | fco 6771 | . . . . . 6 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ) | |
9 | 7, 8 | mpan 689 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
10 | 9 | fdmd 6757 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom (ℜ ∘ 𝐹) = 𝐴) |
11 | 10 | eleq1d 2829 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom (ℜ ∘ 𝐹) ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
12 | 6, 11 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → 𝐴 ∈ dom vol)) |
13 | ismbf1 25678 | . . . 4 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
14 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
15 | ismbf 25682 | . . . . . . . 8 ⊢ ((ℜ ∘ 𝐹):𝐴⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
17 | imf 15162 | . . . . . . . . . 10 ⊢ ℑ:ℂ⟶ℝ | |
18 | fco 6771 | . . . . . . . . . 10 ⊢ ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ) | |
19 | 17, 18 | mpan 689 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶ℂ → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
20 | 19 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
21 | ismbf 25682 | . . . . . . . 8 ⊢ ((ℑ ∘ 𝐹):𝐴⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
23 | 16, 22 | anbi12d 631 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
24 | r19.26 3117 | . . . . . 6 ⊢ (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
25 | 23, 24 | bitr4di 289 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
26 | mblss 25585 | . . . . . . 7 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
27 | cnex 11265 | . . . . . . . 8 ⊢ ℂ ∈ V | |
28 | reex 11275 | . . . . . . . 8 ⊢ ℝ ∈ V | |
29 | elpm2r 8903 | . . . . . . . 8 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
30 | 27, 28, 29 | mpanl12 701 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
31 | 26, 30 | sylan2 592 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
32 | 31 | biantrurd 532 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
33 | 25, 32 | bitrd 279 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
34 | 13, 33 | bitr4id 290 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
35 | 34 | ex 412 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))) |
36 | 4, 12, 35 | pm5.21ndd 379 | 1 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 ∘ ccom 5704 ⟶wf 6569 (class class class)co 7448 ↑pm cpm 8885 ℂcc 11182 ℝcr 11183 (,)cioo 13407 ℜcre 15146 ℑcim 15147 volcvol 25517 MblFncmbf 25668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 |
This theorem is referenced by: ismbfcn2 25692 mbfres 25698 mbfimaopnlem 25709 mbfresfi 37626 itgaddnc 37640 itgmulc2nc 37648 ftc1anclem5 37657 mbfres2cn 45879 |
Copyright terms: Public domain | W3C validator |