| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbfcn | Structured version Visualization version GIF version | ||
| Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| ismbfcn | ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfdm 25555 | . . 3 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 2 | fdm 6660 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
| 3 | 2 | eleq1d 2816 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
| 4 | 1, 3 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol)) |
| 5 | mbfdm 25555 | . . . 4 ⊢ ((ℜ ∘ 𝐹) ∈ MblFn → dom (ℜ ∘ 𝐹) ∈ dom vol) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → dom (ℜ ∘ 𝐹) ∈ dom vol) |
| 7 | ref 15019 | . . . . . 6 ⊢ ℜ:ℂ⟶ℝ | |
| 8 | fco 6675 | . . . . . 6 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ) | |
| 9 | 7, 8 | mpan 690 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
| 10 | 9 | fdmd 6661 | . . . 4 ⊢ (𝐹:𝐴⟶ℂ → dom (ℜ ∘ 𝐹) = 𝐴) |
| 11 | 10 | eleq1d 2816 | . . 3 ⊢ (𝐹:𝐴⟶ℂ → (dom (ℜ ∘ 𝐹) ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
| 12 | 6, 11 | imbitrid 244 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → 𝐴 ∈ dom vol)) |
| 13 | ismbf1 25553 | . . . 4 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
| 14 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹):𝐴⟶ℝ) |
| 15 | ismbf 25557 | . . . . . . . 8 ⊢ ((ℜ ∘ 𝐹):𝐴⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
| 17 | imf 15020 | . . . . . . . . . 10 ⊢ ℑ:ℂ⟶ℝ | |
| 18 | fco 6675 | . . . . . . . . . 10 ⊢ ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ) | |
| 19 | 17, 18 | mpan 690 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶ℂ → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
| 20 | 19 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹):𝐴⟶ℝ) |
| 21 | ismbf 25557 | . . . . . . . 8 ⊢ ((ℑ ∘ 𝐹):𝐴⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
| 22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) |
| 23 | 16, 22 | anbi12d 632 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| 24 | r19.26 3092 | . . . . . 6 ⊢ (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)(◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)) | |
| 25 | 23, 24 | bitr4di 289 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) |
| 26 | mblss 25460 | . . . . . . 7 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 27 | cnex 11087 | . . . . . . . 8 ⊢ ℂ ∈ V | |
| 28 | reex 11097 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 29 | elpm2r 8769 | . . . . . . . 8 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ)) | |
| 30 | 27, 28, 29 | mpanl12 702 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 31 | 26, 30 | sylan2 593 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ)) |
| 32 | 31 | biantrurd 532 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
| 33 | 25, 32 | bitrd 279 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))) |
| 34 | 13, 33 | bitr4id 290 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
| 35 | 34 | ex 412 | . 2 ⊢ (𝐹:𝐴⟶ℂ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))) |
| 36 | 4, 12, 35 | pm5.21ndd 379 | 1 ⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ∘ ccom 5620 ⟶wf 6477 (class class class)co 7346 ↑pm cpm 8751 ℂcc 11004 ℝcr 11005 (,)cioo 13245 ℜcre 15004 ℑcim 15005 volcvol 25392 MblFncmbf 25543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21285 df-met 21286 df-ovol 25393 df-vol 25394 df-mbf 25548 |
| This theorem is referenced by: ismbfcn2 25567 mbfres 25573 mbfimaopnlem 25584 mbfresfi 37712 itgaddnc 37726 itgmulc2nc 37734 ftc1anclem5 37743 mbfres2cn 46002 |
| Copyright terms: Public domain | W3C validator |