Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfdm | Structured version Visualization version GIF version |
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfdm | ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ref 14675 | . . . 4 ⊢ ℜ:ℂ⟶ℝ | |
2 | mbff 24522 | . . . 4 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | |
3 | fco 6569 | . . . 4 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) | |
4 | 1, 2, 3 | sylancr 590 | . . 3 ⊢ (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) |
5 | fimacnv 6567 | . . 3 ⊢ ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → (◡(ℜ ∘ 𝐹) “ ℝ) = dom 𝐹) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ MblFn → (◡(ℜ ∘ 𝐹) “ ℝ) = dom 𝐹) |
7 | imaeq2 5925 | . . . 4 ⊢ (𝑥 = ℝ → (◡(ℜ ∘ 𝐹) “ 𝑥) = (◡(ℜ ∘ 𝐹) “ ℝ)) | |
8 | 7 | eleq1d 2822 | . . 3 ⊢ (𝑥 = ℝ → ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ 𝐹) “ ℝ) ∈ dom vol)) |
9 | ismbf1 24521 | . . . 4 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
10 | simpl 486 | . . . . 5 ⊢ (((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) | |
11 | 10 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
12 | 9, 11 | simplbiim 508 | . . 3 ⊢ (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
13 | ioomax 13010 | . . . . 5 ⊢ (-∞(,)+∞) = ℝ | |
14 | ioof 13035 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
15 | ffn 6545 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (,) Fn (ℝ* × ℝ*) |
17 | mnfxr 10890 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
18 | pnfxr 10887 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
19 | fnovrn 7383 | . . . . . 6 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
20 | 16, 17, 18, 19 | mp3an 1463 | . . . . 5 ⊢ (-∞(,)+∞) ∈ ran (,) |
21 | 13, 20 | eqeltrri 2835 | . . . 4 ⊢ ℝ ∈ ran (,) |
22 | 21 | a1i 11 | . . 3 ⊢ (𝐹 ∈ MblFn → ℝ ∈ ran (,)) |
23 | 8, 12, 22 | rspcdva 3539 | . 2 ⊢ (𝐹 ∈ MblFn → (◡(ℜ ∘ 𝐹) “ ℝ) ∈ dom vol) |
24 | 6, 23 | eqeltrrd 2839 | 1 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 𝒫 cpw 4513 × cxp 5549 ◡ccnv 5550 dom cdm 5551 ran crn 5552 “ cima 5554 ∘ ccom 5555 Fn wfn 6375 ⟶wf 6376 (class class class)co 7213 ↑pm cpm 8509 ℂcc 10727 ℝcr 10728 +∞cpnf 10864 -∞cmnf 10865 ℝ*cxr 10866 (,)cioo 12935 ℜcre 14660 ℑcim 14661 volcvol 24360 MblFncmbf 24511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-2 11893 df-ioo 12939 df-cj 14662 df-re 14663 df-mbf 24516 |
This theorem is referenced by: ismbf 24525 ismbfcn 24526 mbfimaicc 24528 mbfdm2 24534 mbfres 24541 mbfmulc2lem 24544 mbfimaopn2 24554 cncombf 24555 mbfaddlem 24557 mbfadd 24558 mbfsub 24559 mbfmullem2 24622 mbfmul 24624 bddmulibl 24736 bddibl 24737 bddiblnc 24739 itgulm 25300 ftc1anclem1 35587 ftc1anclem5 35591 ftc1anclem8 35594 smfmbfcex 43967 |
Copyright terms: Public domain | W3C validator |