MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm Structured version   Visualization version   GIF version

Theorem mbfdm 25680
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfdm (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)

Proof of Theorem mbfdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ref 15161 . . . 4 ℜ:ℂ⟶ℝ
2 mbff 25679 . . . 4 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
3 fco 6771 . . . 4 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
41, 2, 3sylancr 586 . . 3 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
5 fimacnv 6769 . . 3 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
64, 5syl 17 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
7 imaeq2 6085 . . . 4 (𝑥 = ℝ → ((ℜ ∘ 𝐹) “ 𝑥) = ((ℜ ∘ 𝐹) “ ℝ))
87eleq1d 2829 . . 3 (𝑥 = ℝ → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol))
9 ismbf1 25678 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
10 simpl 482 . . . . 5 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
1110ralimi 3089 . . . 4 (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
129, 11simplbiim 504 . . 3 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
13 ioomax 13482 . . . . 5 (-∞(,)+∞) = ℝ
14 ioof 13507 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
15 ffn 6747 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
1614, 15ax-mp 5 . . . . . 6 (,) Fn (ℝ* × ℝ*)
17 mnfxr 11347 . . . . . 6 -∞ ∈ ℝ*
18 pnfxr 11344 . . . . . 6 +∞ ∈ ℝ*
19 fnovrn 7625 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
2016, 17, 18, 19mp3an 1461 . . . . 5 (-∞(,)+∞) ∈ ran (,)
2113, 20eqeltrri 2841 . . . 4 ℝ ∈ ran (,)
2221a1i 11 . . 3 (𝐹 ∈ MblFn → ℝ ∈ ran (,))
238, 12, 22rspcdva 3636 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol)
246, 23eqeltrrd 2845 1 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  𝒫 cpw 4622   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704   Fn wfn 6568  wf 6569  (class class class)co 7448  pm cpm 8885  cc 11182  cr 11183  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323  (,)cioo 13407  cre 15146  cim 15147  volcvol 25517  MblFncmbf 25668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-ioo 13411  df-cj 15148  df-re 15149  df-mbf 25673
This theorem is referenced by:  ismbf  25682  ismbfcn  25683  mbfimaicc  25685  mbfdm2  25691  mbfres  25698  mbfmulc2lem  25701  mbfimaopn2  25711  cncombf  25712  mbfaddlem  25714  mbfadd  25715  mbfsub  25716  mbfmullem2  25779  mbfmul  25781  bddmulibl  25894  bddibl  25895  bddiblnc  25897  itgulm  26469  ftc1anclem1  37653  ftc1anclem5  37657  ftc1anclem8  37660  smfmbfcex  46681
  Copyright terms: Public domain W3C validator