Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm Structured version   Visualization version   GIF version

Theorem mbfdm 24237
 Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfdm (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)

Proof of Theorem mbfdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ref 14465 . . . 4 ℜ:ℂ⟶ℝ
2 mbff 24236 . . . 4 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
3 fco 6505 . . . 4 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
41, 2, 3sylancr 590 . . 3 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
5 fimacnv 6816 . . 3 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
64, 5syl 17 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
7 imaeq2 5892 . . . 4 (𝑥 = ℝ → ((ℜ ∘ 𝐹) “ 𝑥) = ((ℜ ∘ 𝐹) “ ℝ))
87eleq1d 2874 . . 3 (𝑥 = ℝ → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol))
9 ismbf1 24235 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
10 simpl 486 . . . . 5 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
1110ralimi 3128 . . . 4 (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
129, 11simplbiim 508 . . 3 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
13 ioomax 12802 . . . . 5 (-∞(,)+∞) = ℝ
14 ioof 12827 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
15 ffn 6487 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
1614, 15ax-mp 5 . . . . . 6 (,) Fn (ℝ* × ℝ*)
17 mnfxr 10689 . . . . . 6 -∞ ∈ ℝ*
18 pnfxr 10686 . . . . . 6 +∞ ∈ ℝ*
19 fnovrn 7304 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
2016, 17, 18, 19mp3an 1458 . . . . 5 (-∞(,)+∞) ∈ ran (,)
2113, 20eqeltrri 2887 . . . 4 ℝ ∈ ran (,)
2221a1i 11 . . 3 (𝐹 ∈ MblFn → ℝ ∈ ran (,))
238, 12, 22rspcdva 3573 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol)
246, 23eqeltrrd 2891 1 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  𝒫 cpw 4497   × cxp 5517  ◡ccnv 5518  dom cdm 5519  ran crn 5520   “ cima 5522   ∘ ccom 5523   Fn wfn 6319  ⟶wf 6320  (class class class)co 7135   ↑pm cpm 8392  ℂcc 10526  ℝcr 10527  +∞cpnf 10663  -∞cmnf 10664  ℝ*cxr 10665  (,)cioo 12728  ℜcre 14450  ℑcim 14451  volcvol 24074  MblFncmbf 24225 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7673  df-2nd 7674  df-er 8274  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-2 11690  df-ioo 12732  df-cj 14452  df-re 14453  df-mbf 24230 This theorem is referenced by:  ismbf  24239  ismbfcn  24240  mbfimaicc  24242  mbfdm2  24248  mbfres  24255  mbfmulc2lem  24258  mbfimaopn2  24268  cncombf  24269  mbfaddlem  24271  mbfadd  24272  mbfsub  24273  mbfmullem2  24335  mbfmul  24337  bddmulibl  24449  bddibl  24450  bddiblnc  24452  itgulm  25010  ftc1anclem1  35146  ftc1anclem5  35150  ftc1anclem8  35153  smfmbfcex  43408
 Copyright terms: Public domain W3C validator