MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm Structured version   Visualization version   GIF version

Theorem mbfdm 23914
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfdm (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)

Proof of Theorem mbfdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ref 14309 . . . 4 ℜ:ℂ⟶ℝ
2 mbff 23913 . . . 4 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
3 fco 6406 . . . 4 ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
41, 2, 3sylancr 587 . . 3 (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ)
5 fimacnv 6711 . . 3 ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
64, 5syl 17 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) = dom 𝐹)
7 imaeq2 5809 . . . 4 (𝑥 = ℝ → ((ℜ ∘ 𝐹) “ 𝑥) = ((ℜ ∘ 𝐹) “ ℝ))
87eleq1d 2869 . . 3 (𝑥 = ℝ → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol))
9 ismbf1 23912 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
10 simpl 483 . . . . 5 ((((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
1110ralimi 3129 . . . 4 (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
129, 11simplbiim 505 . . 3 (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol)
13 ioomax 12665 . . . . 5 (-∞(,)+∞) = ℝ
14 ioof 12689 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
15 ffn 6389 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
1614, 15ax-mp 5 . . . . . 6 (,) Fn (ℝ* × ℝ*)
17 mnfxr 10551 . . . . . 6 -∞ ∈ ℝ*
18 pnfxr 10548 . . . . . 6 +∞ ∈ ℝ*
19 fnovrn 7186 . . . . . 6 (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
2016, 17, 18, 19mp3an 1453 . . . . 5 (-∞(,)+∞) ∈ ran (,)
2113, 20eqeltrri 2882 . . . 4 ℝ ∈ ran (,)
2221a1i 11 . . 3 (𝐹 ∈ MblFn → ℝ ∈ ran (,))
238, 12, 22rspcdva 3567 . 2 (𝐹 ∈ MblFn → ((ℜ ∘ 𝐹) “ ℝ) ∈ dom vol)
246, 23eqeltrrd 2886 1 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wral 3107  𝒫 cpw 4459   × cxp 5448  ccnv 5449  dom cdm 5450  ran crn 5451  cima 5453  ccom 5454   Fn wfn 6227  wf 6228  (class class class)co 7023  pm cpm 8264  cc 10388  cr 10389  +∞cpnf 10525  -∞cmnf 10526  *cxr 10527  (,)cioo 12592  cre 14294  cim 14295  volcvol 23751  MblFncmbf 23902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-er 8146  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-2 11554  df-ioo 12596  df-cj 14296  df-re 14297  df-mbf 23907
This theorem is referenced by:  ismbf  23916  ismbfcn  23917  mbfimaicc  23919  mbfdm2  23925  mbfres  23932  mbfmulc2lem  23935  mbfimaopn2  23945  cncombf  23946  mbfaddlem  23948  mbfadd  23949  mbfsub  23950  mbfmullem2  24012  mbfmul  24014  bddmulibl  24126  bddibl  24127  itgulm  24683  bddiblnc  34514  ftc1anclem1  34519  ftc1anclem5  34523  ftc1anclem8  34526  smfmbfcex  42600
  Copyright terms: Public domain W3C validator