| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfdm | Structured version Visualization version GIF version | ||
| Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfdm | ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ref 15037 | . . . 4 ⊢ ℜ:ℂ⟶ℝ | |
| 2 | mbff 25542 | . . . 4 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | |
| 3 | fco 6680 | . . . 4 ⊢ ((ℜ:ℂ⟶ℝ ∧ 𝐹:dom 𝐹⟶ℂ) → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) | |
| 4 | 1, 2, 3 | sylancr 587 | . . 3 ⊢ (𝐹 ∈ MblFn → (ℜ ∘ 𝐹):dom 𝐹⟶ℝ) |
| 5 | fimacnv 6678 | . . 3 ⊢ ((ℜ ∘ 𝐹):dom 𝐹⟶ℝ → (◡(ℜ ∘ 𝐹) “ ℝ) = dom 𝐹) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ MblFn → (◡(ℜ ∘ 𝐹) “ ℝ) = dom 𝐹) |
| 7 | imaeq2 6011 | . . . 4 ⊢ (𝑥 = ℝ → (◡(ℜ ∘ 𝐹) “ 𝑥) = (◡(ℜ ∘ 𝐹) “ ℝ)) | |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝑥 = ℝ → ((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (◡(ℜ ∘ 𝐹) “ ℝ) ∈ dom vol)) |
| 9 | ismbf1 25541 | . . . 4 ⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | |
| 10 | simpl 482 | . . . . 5 ⊢ (((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → (◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) | |
| 11 | 10 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) → ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
| 12 | 9, 11 | simplbiim 504 | . . 3 ⊢ (𝐹 ∈ MblFn → ∀𝑥 ∈ ran (,)(◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol) |
| 13 | ioomax 13343 | . . . . 5 ⊢ (-∞(,)+∞) = ℝ | |
| 14 | ioof 13368 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 15 | ffn 6656 | . . . . . . 7 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . 6 ⊢ (,) Fn (ℝ* × ℝ*) |
| 17 | mnfxr 11191 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 18 | pnfxr 11188 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 19 | fnovrn 7528 | . . . . . 6 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
| 20 | 16, 17, 18, 19 | mp3an 1463 | . . . . 5 ⊢ (-∞(,)+∞) ∈ ran (,) |
| 21 | 13, 20 | eqeltrri 2825 | . . . 4 ⊢ ℝ ∈ ran (,) |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝐹 ∈ MblFn → ℝ ∈ ran (,)) |
| 23 | 8, 12, 22 | rspcdva 3580 | . 2 ⊢ (𝐹 ∈ MblFn → (◡(ℜ ∘ 𝐹) “ ℝ) ∈ dom vol) |
| 24 | 6, 23 | eqeltrrd 2829 | 1 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 𝒫 cpw 4553 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ∘ ccom 5627 Fn wfn 6481 ⟶wf 6482 (class class class)co 7353 ↑pm cpm 8761 ℂcc 11026 ℝcr 11027 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 (,)cioo 13266 ℜcre 15022 ℑcim 15023 volcvol 25380 MblFncmbf 25531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-ioo 13270 df-cj 15024 df-re 15025 df-mbf 25536 |
| This theorem is referenced by: ismbf 25545 ismbfcn 25546 mbfimaicc 25548 mbfdm2 25554 mbfres 25561 mbfmulc2lem 25564 mbfimaopn2 25574 cncombf 25575 mbfaddlem 25577 mbfadd 25578 mbfsub 25579 mbfmullem2 25641 mbfmul 25643 bddmulibl 25756 bddibl 25757 bddiblnc 25759 itgulm 26333 ftc1anclem1 37675 ftc1anclem5 37679 ftc1anclem8 37682 smfmbfcex 46745 |
| Copyright terms: Public domain | W3C validator |