MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfconst Structured version   Visualization version   GIF version

Theorem mbfconst 24740
Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfconst ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn)

Proof of Theorem mbfconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 765 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
2 fconstmpt 5645 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2fmptd 6975 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}):𝐴⟶ℂ)
4 mblss 24638 . . . 4 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
54adantr 480 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ)
6 cnex 10899 . . . 4 ℂ ∈ V
7 reex 10909 . . . 4 ℝ ∈ V
8 elpm2r 8596 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ))
96, 7, 8mpanl12 698 . . 3 (((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ))
103, 5, 9syl2anc 583 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ))
112a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) = (𝑥𝐴𝐵))
12 ref 14767 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
1312a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ:ℂ⟶ℝ)
1413feqmptd 6824 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
15 fveq2 6761 . . . . . . . . 9 (𝑦 = 𝐵 → (ℜ‘𝑦) = (ℜ‘𝐵))
161, 11, 14, 15fmptco 6988 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
17 fconstmpt 5645 . . . . . . . 8 (𝐴 × {(ℜ‘𝐵)}) = (𝑥𝐴 ↦ (ℜ‘𝐵))
1816, 17eqtr4di 2795 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)}))
1918cnveqd 5778 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)}))
2019imaeq1d 5962 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) = ((𝐴 × {(ℜ‘𝐵)}) “ 𝑦))
21 recl 14765 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
22 mbfconstlem 24734 . . . . . 6 ((𝐴 ∈ dom vol ∧ (ℜ‘𝐵) ∈ ℝ) → ((𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol)
2321, 22sylan2 592 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol)
2420, 23eqeltrd 2837 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)
25 imf 14768 . . . . . . . . . . 11 ℑ:ℂ⟶ℝ
2625a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ:ℂ⟶ℝ)
2726feqmptd 6824 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
28 fveq2 6761 . . . . . . . . 9 (𝑦 = 𝐵 → (ℑ‘𝑦) = (ℑ‘𝐵))
291, 11, 27, 28fmptco 6988 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
30 fconstmpt 5645 . . . . . . . 8 (𝐴 × {(ℑ‘𝐵)}) = (𝑥𝐴 ↦ (ℑ‘𝐵))
3129, 30eqtr4di 2795 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)}))
3231cnveqd 5778 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)}))
3332imaeq1d 5962 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) = ((𝐴 × {(ℑ‘𝐵)}) “ 𝑦))
34 imcl 14766 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
35 mbfconstlem 24734 . . . . . 6 ((𝐴 ∈ dom vol ∧ (ℑ‘𝐵) ∈ ℝ) → ((𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol)
3634, 35sylan2 592 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol)
3733, 36eqeltrd 2837 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)
3824, 37jca 511 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))
3938ralrimivw 3107 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ran (,)(((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))
40 ismbf1 24731 . 2 ((𝐴 × {𝐵}) ∈ MblFn ↔ ((𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑦 ∈ ran (,)(((ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ ((ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)))
4110, 39, 40sylanbrc 582 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3062  Vcvv 3427  wss 3888  {csn 4563  cmpt 5158   × cxp 5583  ccnv 5584  dom cdm 5585  ran crn 5586  cima 5588  ccom 5589  wf 6419  cfv 6423  (class class class)co 7260  pm cpm 8579  cc 10816  cr 10817  (,)cioo 13024  cre 14752  cim 14753  volcvol 24570  MblFncmbf 24721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-inf2 9345  ax-cnex 10874  ax-resscn 10875  ax-1cn 10876  ax-icn 10877  ax-addcl 10878  ax-addrcl 10879  ax-mulcl 10880  ax-mulrcl 10881  ax-mulcom 10882  ax-addass 10883  ax-mulass 10884  ax-distr 10885  ax-i2m1 10886  ax-1ne0 10887  ax-1rid 10888  ax-rnegex 10889  ax-rrecex 10890  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893  ax-pre-ltadd 10894  ax-pre-mulgt0 10895  ax-pre-sup 10896
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6259  df-on 6260  df-lim 6261  df-suc 6262  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-isom 6432  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-of 7516  df-om 7693  df-1st 7809  df-2nd 7810  df-frecs 8073  df-wrecs 8104  df-recs 8178  df-rdg 8217  df-1o 8272  df-2o 8273  df-er 8461  df-map 8580  df-pm 8581  df-en 8697  df-dom 8698  df-sdom 8699  df-fin 8700  df-sup 9147  df-inf 9148  df-oi 9215  df-dju 9606  df-card 9644  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-sub 11153  df-neg 11154  df-div 11579  df-nn 11920  df-2 11982  df-3 11983  df-n0 12180  df-z 12266  df-uz 12528  df-q 12634  df-rp 12676  df-xadd 12794  df-ioo 13028  df-ico 13030  df-icc 13031  df-fz 13185  df-fzo 13328  df-fl 13456  df-seq 13666  df-exp 13727  df-hash 13989  df-cj 14754  df-re 14755  df-im 14756  df-sqrt 14890  df-abs 14891  df-clim 15141  df-sum 15342  df-xmet 20534  df-met 20535  df-ovol 24571  df-vol 24572  df-mbf 24726
This theorem is referenced by:  mbf0  24741  mbfss  24753  mbfmulc2lem  24754  mbfpos  24758  ibl0  24894  iblconst  24925
  Copyright terms: Public domain W3C validator