| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfconst | Structured version Visualization version GIF version | ||
| Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfconst | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 769 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 2 | fconstmpt 5747 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 7134 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}):𝐴⟶ℂ) |
| 4 | mblss 25566 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) |
| 6 | cnex 11236 | . . . 4 ⊢ ℂ ∈ V | |
| 7 | reex 11246 | . . . 4 ⊢ ℝ ∈ V | |
| 8 | elpm2r 8885 | . . . 4 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) | |
| 9 | 6, 7, 8 | mpanl12 702 | . . 3 ⊢ (((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 10 | 3, 5, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 11 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 12 | ref 15151 | . . . . . . . . . . 11 ⊢ ℜ:ℂ⟶ℝ | |
| 13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ:ℂ⟶ℝ) |
| 14 | 13 | feqmptd 6977 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦))) |
| 15 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℜ‘𝑦) = (ℜ‘𝐵)) | |
| 16 | 1, 11, 14, 15 | fmptco 7149 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) |
| 17 | fconstmpt 5747 | . . . . . . . 8 ⊢ (𝐴 × {(ℜ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) | |
| 18 | 16, 17 | eqtr4di 2795 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)})) |
| 19 | 18 | cnveqd 5886 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℜ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℜ‘𝐵)})) |
| 20 | 19 | imaeq1d 6077 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦)) |
| 21 | recl 15149 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
| 22 | mbfconstlem 25662 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℜ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 23 | 21, 22 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 24 | 20, 23 | eqeltrd 2841 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 25 | imf 15152 | . . . . . . . . . . 11 ⊢ ℑ:ℂ⟶ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ:ℂ⟶ℝ) |
| 27 | 26 | feqmptd 6977 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦))) |
| 28 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℑ‘𝑦) = (ℑ‘𝐵)) | |
| 29 | 1, 11, 27, 28 | fmptco 7149 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) |
| 30 | fconstmpt 5747 | . . . . . . . 8 ⊢ (𝐴 × {(ℑ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) | |
| 31 | 29, 30 | eqtr4di 2795 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)})) |
| 32 | 31 | cnveqd 5886 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℑ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℑ‘𝐵)})) |
| 33 | 32 | imaeq1d 6077 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦)) |
| 34 | imcl 15150 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
| 35 | mbfconstlem 25662 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℑ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 36 | 34, 35 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 37 | 33, 36 | eqeltrd 2841 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 38 | 24, 37 | jca 511 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 39 | 38 | ralrimivw 3150 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 40 | ismbf1 25659 | . 2 ⊢ ((𝐴 × {𝐵}) ∈ MblFn ↔ ((𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))) | |
| 41 | 10, 39, 40 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 {csn 4626 ↦ cmpt 5225 × cxp 5683 ◡ccnv 5684 dom cdm 5685 ran crn 5686 “ cima 5688 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑pm cpm 8867 ℂcc 11153 ℝcr 11154 (,)cioo 13387 ℜcre 15136 ℑcim 15137 volcvol 25498 MblFncmbf 25649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xadd 13155 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-xmet 21357 df-met 21358 df-ovol 25499 df-vol 25500 df-mbf 25654 |
| This theorem is referenced by: mbf0 25669 mbfss 25681 mbfmulc2lem 25682 mbfpos 25686 ibl0 25822 iblconst 25853 |
| Copyright terms: Public domain | W3C validator |