Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfconst | Structured version Visualization version GIF version |
Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfconst | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
2 | fconstmpt 5645 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 1, 2 | fmptd 6975 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}):𝐴⟶ℂ) |
4 | mblss 24638 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) |
6 | cnex 10899 | . . . 4 ⊢ ℂ ∈ V | |
7 | reex 10909 | . . . 4 ⊢ ℝ ∈ V | |
8 | elpm2r 8596 | . . . 4 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) | |
9 | 6, 7, 8 | mpanl12 698 | . . 3 ⊢ (((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
10 | 3, 5, 9 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
11 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
12 | ref 14767 | . . . . . . . . . . 11 ⊢ ℜ:ℂ⟶ℝ | |
13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ:ℂ⟶ℝ) |
14 | 13 | feqmptd 6824 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦))) |
15 | fveq2 6761 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℜ‘𝑦) = (ℜ‘𝐵)) | |
16 | 1, 11, 14, 15 | fmptco 6988 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) |
17 | fconstmpt 5645 | . . . . . . . 8 ⊢ (𝐴 × {(ℜ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) | |
18 | 16, 17 | eqtr4di 2795 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)})) |
19 | 18 | cnveqd 5778 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℜ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℜ‘𝐵)})) |
20 | 19 | imaeq1d 5962 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦)) |
21 | recl 14765 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
22 | mbfconstlem 24734 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℜ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
23 | 21, 22 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) |
24 | 20, 23 | eqeltrd 2837 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
25 | imf 14768 | . . . . . . . . . . 11 ⊢ ℑ:ℂ⟶ℝ | |
26 | 25 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ:ℂ⟶ℝ) |
27 | 26 | feqmptd 6824 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦))) |
28 | fveq2 6761 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℑ‘𝑦) = (ℑ‘𝐵)) | |
29 | 1, 11, 27, 28 | fmptco 6988 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) |
30 | fconstmpt 5645 | . . . . . . . 8 ⊢ (𝐴 × {(ℑ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) | |
31 | 29, 30 | eqtr4di 2795 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)})) |
32 | 31 | cnveqd 5778 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℑ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℑ‘𝐵)})) |
33 | 32 | imaeq1d 5962 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦)) |
34 | imcl 14766 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
35 | mbfconstlem 24734 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℑ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
36 | 34, 35 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) |
37 | 33, 36 | eqeltrd 2837 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
38 | 24, 37 | jca 511 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
39 | 38 | ralrimivw 3107 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
40 | ismbf1 24731 | . 2 ⊢ ((𝐴 × {𝐵}) ∈ MblFn ↔ ((𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))) | |
41 | 10, 39, 40 | sylanbrc 582 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3062 Vcvv 3427 ⊆ wss 3888 {csn 4563 ↦ cmpt 5158 × cxp 5583 ◡ccnv 5584 dom cdm 5585 ran crn 5586 “ cima 5588 ∘ ccom 5589 ⟶wf 6419 ‘cfv 6423 (class class class)co 7260 ↑pm cpm 8579 ℂcc 10816 ℝcr 10817 (,)cioo 13024 ℜcre 14752 ℑcim 14753 volcvol 24570 MblFncmbf 24721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-inf2 9345 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 ax-pre-sup 10896 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-isom 6432 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-of 7516 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-2o 8273 df-er 8461 df-map 8580 df-pm 8581 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-sup 9147 df-inf 9148 df-oi 9215 df-dju 9606 df-card 9644 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-div 11579 df-nn 11920 df-2 11982 df-3 11983 df-n0 12180 df-z 12266 df-uz 12528 df-q 12634 df-rp 12676 df-xadd 12794 df-ioo 13028 df-ico 13030 df-icc 13031 df-fz 13185 df-fzo 13328 df-fl 13456 df-seq 13666 df-exp 13727 df-hash 13989 df-cj 14754 df-re 14755 df-im 14756 df-sqrt 14890 df-abs 14891 df-clim 15141 df-sum 15342 df-xmet 20534 df-met 20535 df-ovol 24571 df-vol 24572 df-mbf 24726 |
This theorem is referenced by: mbf0 24741 mbfss 24753 mbfmulc2lem 24754 mbfpos 24758 ibl0 24894 iblconst 24925 |
Copyright terms: Public domain | W3C validator |