| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfconst | Structured version Visualization version GIF version | ||
| Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfconst | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 2 | fconstmpt 5676 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 7042 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}):𝐴⟶ℂ) |
| 4 | mblss 25452 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) |
| 6 | cnex 11079 | . . . 4 ⊢ ℂ ∈ V | |
| 7 | reex 11089 | . . . 4 ⊢ ℝ ∈ V | |
| 8 | elpm2r 8764 | . . . 4 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) | |
| 9 | 6, 7, 8 | mpanl12 702 | . . 3 ⊢ (((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 10 | 3, 5, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 11 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 12 | ref 15011 | . . . . . . . . . . 11 ⊢ ℜ:ℂ⟶ℝ | |
| 13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ:ℂ⟶ℝ) |
| 14 | 13 | feqmptd 6885 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦))) |
| 15 | fveq2 6817 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℜ‘𝑦) = (ℜ‘𝐵)) | |
| 16 | 1, 11, 14, 15 | fmptco 7057 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) |
| 17 | fconstmpt 5676 | . . . . . . . 8 ⊢ (𝐴 × {(ℜ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) | |
| 18 | 16, 17 | eqtr4di 2783 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)})) |
| 19 | 18 | cnveqd 5813 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℜ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℜ‘𝐵)})) |
| 20 | 19 | imaeq1d 6005 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦)) |
| 21 | recl 15009 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
| 22 | mbfconstlem 25548 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℜ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 23 | 21, 22 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 24 | 20, 23 | eqeltrd 2829 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 25 | imf 15012 | . . . . . . . . . . 11 ⊢ ℑ:ℂ⟶ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ:ℂ⟶ℝ) |
| 27 | 26 | feqmptd 6885 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦))) |
| 28 | fveq2 6817 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℑ‘𝑦) = (ℑ‘𝐵)) | |
| 29 | 1, 11, 27, 28 | fmptco 7057 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) |
| 30 | fconstmpt 5676 | . . . . . . . 8 ⊢ (𝐴 × {(ℑ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) | |
| 31 | 29, 30 | eqtr4di 2783 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)})) |
| 32 | 31 | cnveqd 5813 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℑ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℑ‘𝐵)})) |
| 33 | 32 | imaeq1d 6005 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦)) |
| 34 | imcl 15010 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
| 35 | mbfconstlem 25548 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℑ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 36 | 34, 35 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 37 | 33, 36 | eqeltrd 2829 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 38 | 24, 37 | jca 511 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 39 | 38 | ralrimivw 3126 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 40 | ismbf1 25545 | . 2 ⊢ ((𝐴 × {𝐵}) ∈ MblFn ↔ ((𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))) | |
| 41 | 10, 39, 40 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 Vcvv 3434 ⊆ wss 3900 {csn 4574 ↦ cmpt 5170 × cxp 5612 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 ∘ ccom 5618 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ↑pm cpm 8746 ℂcc 10996 ℝcr 10997 (,)cioo 13237 ℜcre 14996 ℑcim 14997 volcvol 25384 MblFncmbf 25535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xadd 13004 df-ioo 13241 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 df-xmet 21277 df-met 21278 df-ovol 25385 df-vol 25386 df-mbf 25540 |
| This theorem is referenced by: mbf0 25555 mbfss 25567 mbfmulc2lem 25568 mbfpos 25572 ibl0 25708 iblconst 25739 |
| Copyright terms: Public domain | W3C validator |