| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfconst | Structured version Visualization version GIF version | ||
| Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfconst | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 2 | fconstmpt 5681 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 7053 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}):𝐴⟶ℂ) |
| 4 | mblss 25465 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) |
| 6 | cnex 11093 | . . . 4 ⊢ ℂ ∈ V | |
| 7 | reex 11103 | . . . 4 ⊢ ℝ ∈ V | |
| 8 | elpm2r 8775 | . . . 4 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) | |
| 9 | 6, 7, 8 | mpanl12 702 | . . 3 ⊢ (((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 10 | 3, 5, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 11 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 12 | ref 15025 | . . . . . . . . . . 11 ⊢ ℜ:ℂ⟶ℝ | |
| 13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ:ℂ⟶ℝ) |
| 14 | 13 | feqmptd 6896 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦))) |
| 15 | fveq2 6828 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℜ‘𝑦) = (ℜ‘𝐵)) | |
| 16 | 1, 11, 14, 15 | fmptco 7068 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) |
| 17 | fconstmpt 5681 | . . . . . . . 8 ⊢ (𝐴 × {(ℜ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) | |
| 18 | 16, 17 | eqtr4di 2784 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)})) |
| 19 | 18 | cnveqd 5820 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℜ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℜ‘𝐵)})) |
| 20 | 19 | imaeq1d 6013 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦)) |
| 21 | recl 15023 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
| 22 | mbfconstlem 25561 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℜ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 23 | 21, 22 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 24 | 20, 23 | eqeltrd 2831 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 25 | imf 15026 | . . . . . . . . . . 11 ⊢ ℑ:ℂ⟶ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ:ℂ⟶ℝ) |
| 27 | 26 | feqmptd 6896 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦))) |
| 28 | fveq2 6828 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℑ‘𝑦) = (ℑ‘𝐵)) | |
| 29 | 1, 11, 27, 28 | fmptco 7068 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) |
| 30 | fconstmpt 5681 | . . . . . . . 8 ⊢ (𝐴 × {(ℑ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) | |
| 31 | 29, 30 | eqtr4di 2784 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)})) |
| 32 | 31 | cnveqd 5820 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℑ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℑ‘𝐵)})) |
| 33 | 32 | imaeq1d 6013 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦)) |
| 34 | imcl 15024 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
| 35 | mbfconstlem 25561 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℑ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 36 | 34, 35 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 37 | 33, 36 | eqeltrd 2831 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 38 | 24, 37 | jca 511 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 39 | 38 | ralrimivw 3128 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 40 | ismbf1 25558 | . 2 ⊢ ((𝐴 × {𝐵}) ∈ MblFn ↔ ((𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))) | |
| 41 | 10, 39, 40 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 {csn 4575 ↦ cmpt 5174 × cxp 5617 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 ∘ ccom 5623 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 ↑pm cpm 8757 ℂcc 11010 ℝcr 11011 (,)cioo 13251 ℜcre 15010 ℑcim 15011 volcvol 25397 MblFncmbf 25548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-q 12853 df-rp 12897 df-xadd 13018 df-ioo 13255 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-fl 13702 df-seq 13915 df-exp 13975 df-hash 14244 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-sum 15600 df-xmet 21290 df-met 21291 df-ovol 25398 df-vol 25399 df-mbf 25553 |
| This theorem is referenced by: mbf0 25568 mbfss 25580 mbfmulc2lem 25581 mbfpos 25585 ibl0 25721 iblconst 25752 |
| Copyright terms: Public domain | W3C validator |