| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfconst | Structured version Visualization version GIF version | ||
| Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfconst | ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 2 | fconstmpt 5685 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 1, 2 | fmptd 7052 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}):𝐴⟶ℂ) |
| 4 | mblss 25448 | . . . 4 ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) |
| 6 | cnex 11109 | . . . 4 ⊢ ℂ ∈ V | |
| 7 | reex 11119 | . . . 4 ⊢ ℝ ∈ V | |
| 8 | elpm2r 8779 | . . . 4 ⊢ (((ℂ ∈ V ∧ ℝ ∈ V) ∧ ((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) | |
| 9 | 6, 7, 8 | mpanl12 702 | . . 3 ⊢ (((𝐴 × {𝐵}):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 10 | 3, 5, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ)) |
| 11 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 12 | ref 15037 | . . . . . . . . . . 11 ⊢ ℜ:ℂ⟶ℝ | |
| 13 | 12 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ:ℂ⟶ℝ) |
| 14 | 13 | feqmptd 6895 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦))) |
| 15 | fveq2 6826 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℜ‘𝑦) = (ℜ‘𝐵)) | |
| 16 | 1, 11, 14, 15 | fmptco 7067 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) |
| 17 | fconstmpt 5685 | . . . . . . . 8 ⊢ (𝐴 × {(ℜ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) | |
| 18 | 16, 17 | eqtr4di 2782 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℜ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℜ‘𝐵)})) |
| 19 | 18 | cnveqd 5822 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℜ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℜ‘𝐵)})) |
| 20 | 19 | imaeq1d 6014 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦)) |
| 21 | recl 15035 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
| 22 | mbfconstlem 25544 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℜ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 23 | 21, 22 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℜ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 24 | 20, 23 | eqeltrd 2828 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 25 | imf 15038 | . . . . . . . . . . 11 ⊢ ℑ:ℂ⟶ℝ | |
| 26 | 25 | a1i 11 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ:ℂ⟶ℝ) |
| 27 | 26 | feqmptd 6895 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦))) |
| 28 | fveq2 6826 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → (ℑ‘𝑦) = (ℑ‘𝐵)) | |
| 29 | 1, 11, 27, 28 | fmptco 7067 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) |
| 30 | fconstmpt 5685 | . . . . . . . 8 ⊢ (𝐴 × {(ℑ‘𝐵)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) | |
| 31 | 29, 30 | eqtr4di 2782 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (ℑ ∘ (𝐴 × {𝐵})) = (𝐴 × {(ℑ‘𝐵)})) |
| 32 | 31 | cnveqd 5822 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ◡(ℑ ∘ (𝐴 × {𝐵})) = ◡(𝐴 × {(ℑ‘𝐵)})) |
| 33 | 32 | imaeq1d 6014 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) = (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦)) |
| 34 | imcl 15036 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
| 35 | mbfconstlem 25544 | . . . . . 6 ⊢ ((𝐴 ∈ dom vol ∧ (ℑ‘𝐵) ∈ ℝ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) | |
| 36 | 34, 35 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(𝐴 × {(ℑ‘𝐵)}) “ 𝑦) ∈ dom vol) |
| 37 | 33, 36 | eqeltrd 2828 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol) |
| 38 | 24, 37 | jca 511 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 39 | 38 | ralrimivw 3125 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol)) |
| 40 | ismbf1 25541 | . 2 ⊢ ((𝐴 × {𝐵}) ∈ MblFn ↔ ((𝐴 × {𝐵}) ∈ (ℂ ↑pm ℝ) ∧ ∀𝑦 ∈ ran (,)((◡(ℜ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol ∧ (◡(ℑ ∘ (𝐴 × {𝐵})) “ 𝑦) ∈ dom vol))) | |
| 41 | 10, 39, 40 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 {csn 4579 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑pm cpm 8761 ℂcc 11026 ℝcr 11027 (,)cioo 13266 ℜcre 15022 ℑcim 15023 volcvol 25380 MblFncmbf 25531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xadd 13033 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-xmet 21272 df-met 21273 df-ovol 25381 df-vol 25382 df-mbf 25536 |
| This theorem is referenced by: mbf0 25551 mbfss 25563 mbfmulc2lem 25564 mbfpos 25568 ibl0 25704 iblconst 25735 |
| Copyright terms: Public domain | W3C validator |