| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhnm | Structured version Visualization version GIF version | ||
| Description: The norm of the image by ℤRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| Ref | Expression |
|---|---|
| nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
| nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| zrhnm.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| zrhnm | ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ NzRing) | |
| 2 | nzrring 20401 | . . . . 5 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ Ring) |
| 4 | simpr 484 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 5 | zrhnm.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 5, 6, 7 | zrhmulg 21416 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
| 9 | 8 | fveq2d 6826 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
| 10 | 3, 4, 9 | syl2anc 584 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
| 11 | simpl1 1192 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmMod) | |
| 12 | nmmulg.x | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | 12, 7 | ringidcl 20150 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 14 | 3, 13 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ∈ 𝐵) |
| 15 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 16 | nmmulg.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 17 | 12, 15, 16, 6 | nmmulg 33939 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
| 18 | 11, 4, 14, 17 | syl3anc 1373 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
| 19 | 16, 15 | zlmnm 33937 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → 𝑁 = (norm‘𝑍)) |
| 20 | 1, 19 | syl 17 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑁 = (norm‘𝑍)) |
| 21 | 20 | fveq1d 6824 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = ((norm‘𝑍)‘(1r‘𝑅))) |
| 22 | simpl2 1193 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmRing) | |
| 23 | nrgring 24549 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmRing → 𝑍 ∈ Ring) | |
| 24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ Ring) |
| 25 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 26 | 7, 25 | nzrnz 20400 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 27 | 1, 26 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 28 | 16, 7 | zlm1 33934 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑍) |
| 29 | 16, 25 | zlm0 33933 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑍) |
| 30 | 28, 29 | isnzr 20399 | . . . . . . 7 ⊢ (𝑍 ∈ NzRing ↔ (𝑍 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 31 | 24, 27, 30 | sylanbrc 583 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NzRing) |
| 32 | eqid 2729 | . . . . . . 7 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
| 33 | 32, 28 | nm1 24553 | . . . . . 6 ⊢ ((𝑍 ∈ NrmRing ∧ 𝑍 ∈ NzRing) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
| 34 | 22, 31, 33 | syl2anc 584 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
| 35 | 21, 34 | eqtrd 2764 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = 1) |
| 36 | 35 | oveq2d 7365 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · (𝑁‘(1r‘𝑅))) = ((abs‘𝑀) · 1)) |
| 37 | 10, 18, 36 | 3eqtrd 2768 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = ((abs‘𝑀) · 1)) |
| 38 | 4 | zcnd 12581 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 39 | abscl 15185 | . . . 4 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℝ) | |
| 40 | 39 | recnd 11143 | . . 3 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℂ) |
| 41 | mulrid 11113 | . . 3 ⊢ ((abs‘𝑀) ∈ ℂ → ((abs‘𝑀) · 1) = (abs‘𝑀)) | |
| 42 | 38, 40, 41 | 3syl 18 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · 1) = (abs‘𝑀)) |
| 43 | 37, 42 | eqtrd 2764 | 1 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 1c1 11010 · cmul 11014 ℤcz 12471 abscabs 15141 Basecbs 17120 0gc0g 17343 .gcmg 18946 1rcur 20066 Ringcrg 20118 NzRingcnzr 20397 ℤRHomczrh 21406 ℤModczlm 21407 normcnm 24462 NrmRingcnrg 24465 NrmModcnlm 24466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-rhm 20357 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-abv 20694 df-lmod 20765 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-zlm 21411 df-nm 24468 df-nrg 24471 df-nlm 24472 |
| This theorem is referenced by: qqhnm 33963 |
| Copyright terms: Public domain | W3C validator |