Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhnm | Structured version Visualization version GIF version |
Description: The norm of the image by ℤRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
zrhnm.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
zrhnm | ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1191 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ NzRing) | |
2 | nzrring 20445 | . . . . 5 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ Ring) |
4 | simpr 484 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
5 | zrhnm.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
6 | eqid 2738 | . . . . . 6 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
7 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | 5, 6, 7 | zrhmulg 20623 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
9 | 8 | fveq2d 6760 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
10 | 3, 4, 9 | syl2anc 583 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
11 | simpl1 1189 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmMod) | |
12 | nmmulg.x | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
13 | 12, 7 | ringidcl 19722 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
14 | 3, 13 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ∈ 𝐵) |
15 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
16 | nmmulg.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
17 | 12, 15, 16, 6 | nmmulg 31818 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
18 | 11, 4, 14, 17 | syl3anc 1369 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
19 | 16, 15 | zlmnm 31816 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → 𝑁 = (norm‘𝑍)) |
20 | 1, 19 | syl 17 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑁 = (norm‘𝑍)) |
21 | 20 | fveq1d 6758 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = ((norm‘𝑍)‘(1r‘𝑅))) |
22 | simpl2 1190 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmRing) | |
23 | nrgring 23733 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmRing → 𝑍 ∈ Ring) | |
24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ Ring) |
25 | eqid 2738 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
26 | 7, 25 | nzrnz 20444 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
27 | 1, 26 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ≠ (0g‘𝑅)) |
28 | 16, 7 | zlm1 31813 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑍) |
29 | 16, 25 | zlm0 31812 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑍) |
30 | 28, 29 | isnzr 20443 | . . . . . . 7 ⊢ (𝑍 ∈ NzRing ↔ (𝑍 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
31 | 24, 27, 30 | sylanbrc 582 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NzRing) |
32 | eqid 2738 | . . . . . . 7 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
33 | 32, 28 | nm1 23737 | . . . . . 6 ⊢ ((𝑍 ∈ NrmRing ∧ 𝑍 ∈ NzRing) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
34 | 22, 31, 33 | syl2anc 583 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
35 | 21, 34 | eqtrd 2778 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = 1) |
36 | 35 | oveq2d 7271 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · (𝑁‘(1r‘𝑅))) = ((abs‘𝑀) · 1)) |
37 | 10, 18, 36 | 3eqtrd 2782 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = ((abs‘𝑀) · 1)) |
38 | 4 | zcnd 12356 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
39 | abscl 14918 | . . . 4 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℝ) | |
40 | 39 | recnd 10934 | . . 3 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℂ) |
41 | mulid1 10904 | . . 3 ⊢ ((abs‘𝑀) ∈ ℂ → ((abs‘𝑀) · 1) = (abs‘𝑀)) | |
42 | 38, 40, 41 | 3syl 18 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · 1) = (abs‘𝑀)) |
43 | 37, 42 | eqtrd 2778 | 1 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 · cmul 10807 ℤcz 12249 abscabs 14873 Basecbs 16840 0gc0g 17067 .gcmg 18615 1rcur 19652 Ringcrg 19698 NzRingcnzr 20441 ℤRHomczrh 20613 ℤModczlm 20614 normcnm 23638 NrmRingcnrg 23641 NrmModcnlm 23642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-rnghom 19874 df-subrg 19937 df-abv 19992 df-lmod 20040 df-nzr 20442 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-zlm 20618 df-nm 23644 df-nrg 23647 df-nlm 23648 |
This theorem is referenced by: qqhnm 31840 |
Copyright terms: Public domain | W3C validator |