| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhnm | Structured version Visualization version GIF version | ||
| Description: The norm of the image by ℤRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| Ref | Expression |
|---|---|
| nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
| nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
| nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| zrhnm.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| zrhnm | ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ NzRing) | |
| 2 | nzrring 20431 | . . . . 5 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ Ring) |
| 4 | simpr 484 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 5 | zrhnm.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 5, 6, 7 | zrhmulg 21446 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
| 9 | 8 | fveq2d 6826 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
| 10 | 3, 4, 9 | syl2anc 584 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
| 11 | simpl1 1192 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmMod) | |
| 12 | nmmulg.x | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 13 | 12, 7 | ringidcl 20183 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 14 | 3, 13 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ∈ 𝐵) |
| 15 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
| 16 | nmmulg.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 17 | 12, 15, 16, 6 | nmmulg 33979 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
| 18 | 11, 4, 14, 17 | syl3anc 1373 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
| 19 | 16, 15 | zlmnm 33977 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → 𝑁 = (norm‘𝑍)) |
| 20 | 1, 19 | syl 17 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑁 = (norm‘𝑍)) |
| 21 | 20 | fveq1d 6824 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = ((norm‘𝑍)‘(1r‘𝑅))) |
| 22 | simpl2 1193 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmRing) | |
| 23 | nrgring 24578 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmRing → 𝑍 ∈ Ring) | |
| 24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ Ring) |
| 25 | eqid 2731 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 26 | 7, 25 | nzrnz 20430 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 27 | 1, 26 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 28 | 16, 7 | zlm1 33974 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑍) |
| 29 | 16, 25 | zlm0 33973 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑍) |
| 30 | 28, 29 | isnzr 20429 | . . . . . . 7 ⊢ (𝑍 ∈ NzRing ↔ (𝑍 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 31 | 24, 27, 30 | sylanbrc 583 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NzRing) |
| 32 | eqid 2731 | . . . . . . 7 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
| 33 | 32, 28 | nm1 24582 | . . . . . 6 ⊢ ((𝑍 ∈ NrmRing ∧ 𝑍 ∈ NzRing) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
| 34 | 22, 31, 33 | syl2anc 584 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
| 35 | 21, 34 | eqtrd 2766 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = 1) |
| 36 | 35 | oveq2d 7362 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · (𝑁‘(1r‘𝑅))) = ((abs‘𝑀) · 1)) |
| 37 | 10, 18, 36 | 3eqtrd 2770 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = ((abs‘𝑀) · 1)) |
| 38 | 4 | zcnd 12578 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 39 | abscl 15185 | . . . 4 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℝ) | |
| 40 | 39 | recnd 11140 | . . 3 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℂ) |
| 41 | mulrid 11110 | . . 3 ⊢ ((abs‘𝑀) ∈ ℂ → ((abs‘𝑀) · 1) = (abs‘𝑀)) | |
| 42 | 38, 40, 41 | 3syl 18 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · 1) = (abs‘𝑀)) |
| 43 | 37, 42 | eqtrd 2766 | 1 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 · cmul 11011 ℤcz 12468 abscabs 15141 Basecbs 17120 0gc0g 17343 .gcmg 18980 1rcur 20099 Ringcrg 20151 NzRingcnzr 20427 ℤRHomczrh 21436 ℤModczlm 21437 normcnm 24491 NrmRingcnrg 24494 NrmModcnlm 24495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-rhm 20390 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-abv 20724 df-lmod 20795 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-zlm 21441 df-nm 24497 df-nrg 24500 df-nlm 24501 |
| This theorem is referenced by: qqhnm 34003 |
| Copyright terms: Public domain | W3C validator |