Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrhnm Structured version   Visualization version   GIF version

Theorem zrhnm 32550
Description: The norm of the image by ℤRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.)
Hypotheses
Ref Expression
nmmulg.x 𝐵 = (Base‘𝑅)
nmmulg.n 𝑁 = (norm‘𝑅)
nmmulg.z 𝑍 = (ℤMod‘𝑅)
zrhnm.1 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhnm (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿𝑀)) = (abs‘𝑀))

Proof of Theorem zrhnm
StepHypRef Expression
1 simpl3 1193 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ NzRing)
2 nzrring 20731 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ Ring)
4 simpr 485 . . . 4 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
5 zrhnm.1 . . . . . 6 𝐿 = (ℤRHom‘𝑅)
6 eqid 2736 . . . . . 6 (.g𝑅) = (.g𝑅)
7 eqid 2736 . . . . . 6 (1r𝑅) = (1r𝑅)
85, 6, 7zrhmulg 20910 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) = (𝑀(.g𝑅)(1r𝑅)))
98fveq2d 6846 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿𝑀)) = (𝑁‘(𝑀(.g𝑅)(1r𝑅))))
103, 4, 9syl2anc 584 . . 3 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿𝑀)) = (𝑁‘(𝑀(.g𝑅)(1r𝑅))))
11 simpl1 1191 . . . 4 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmMod)
12 nmmulg.x . . . . . 6 𝐵 = (Base‘𝑅)
1312, 7ringidcl 19989 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
143, 13syl 17 . . . 4 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r𝑅) ∈ 𝐵)
15 nmmulg.n . . . . 5 𝑁 = (norm‘𝑅)
16 nmmulg.z . . . . 5 𝑍 = (ℤMod‘𝑅)
1712, 15, 16, 6nmmulg 32549 . . . 4 ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(𝑀(.g𝑅)(1r𝑅))) = ((abs‘𝑀) · (𝑁‘(1r𝑅))))
1811, 4, 14, 17syl3anc 1371 . . 3 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝑀(.g𝑅)(1r𝑅))) = ((abs‘𝑀) · (𝑁‘(1r𝑅))))
1916, 15zlmnm 32547 . . . . . . 7 (𝑅 ∈ NzRing → 𝑁 = (norm‘𝑍))
201, 19syl 17 . . . . . 6 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑁 = (norm‘𝑍))
2120fveq1d 6844 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r𝑅)) = ((norm‘𝑍)‘(1r𝑅)))
22 simpl2 1192 . . . . . 6 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmRing)
23 nrgring 24027 . . . . . . . 8 (𝑍 ∈ NrmRing → 𝑍 ∈ Ring)
2422, 23syl 17 . . . . . . 7 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ Ring)
25 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
267, 25nzrnz 20730 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
271, 26syl 17 . . . . . . 7 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r𝑅) ≠ (0g𝑅))
2816, 7zlm1 32542 . . . . . . . 8 (1r𝑅) = (1r𝑍)
2916, 25zlm0 32541 . . . . . . . 8 (0g𝑅) = (0g𝑍)
3028, 29isnzr 20729 . . . . . . 7 (𝑍 ∈ NzRing ↔ (𝑍 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
3124, 27, 30sylanbrc 583 . . . . . 6 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NzRing)
32 eqid 2736 . . . . . . 7 (norm‘𝑍) = (norm‘𝑍)
3332, 28nm1 24031 . . . . . 6 ((𝑍 ∈ NrmRing ∧ 𝑍 ∈ NzRing) → ((norm‘𝑍)‘(1r𝑅)) = 1)
3422, 31, 33syl2anc 584 . . . . 5 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((norm‘𝑍)‘(1r𝑅)) = 1)
3521, 34eqtrd 2776 . . . 4 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r𝑅)) = 1)
3635oveq2d 7373 . . 3 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · (𝑁‘(1r𝑅))) = ((abs‘𝑀) · 1))
3710, 18, 363eqtrd 2780 . 2 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿𝑀)) = ((abs‘𝑀) · 1))
384zcnd 12608 . . 3 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ)
39 abscl 15163 . . . 4 (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℝ)
4039recnd 11183 . . 3 (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℂ)
41 mulid1 11153 . . 3 ((abs‘𝑀) ∈ ℂ → ((abs‘𝑀) · 1) = (abs‘𝑀))
4238, 40, 413syl 18 . 2 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · 1) = (abs‘𝑀))
4337, 42eqtrd 2776 1 (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿𝑀)) = (abs‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   · cmul 11056  cz 12499  abscabs 15119  Basecbs 17083  0gc0g 17321  .gcmg 18872  1rcur 19913  Ringcrg 19964  NzRingcnzr 20727  ℤRHomczrh 20900  ℤModczlm 20901  normcnm 23932  NrmRingcnrg 23935  NrmModcnlm 23936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-rnghom 20146  df-subrg 20220  df-abv 20276  df-lmod 20324  df-nzr 20728  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zlm 20905  df-nm 23938  df-nrg 23941  df-nlm 23942
This theorem is referenced by:  qqhnm  32571
  Copyright terms: Public domain W3C validator