Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrhnm | Structured version Visualization version GIF version |
Description: The norm of the image by ℤRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
Ref | Expression |
---|---|
nmmulg.x | ⊢ 𝐵 = (Base‘𝑅) |
nmmulg.n | ⊢ 𝑁 = (norm‘𝑅) |
nmmulg.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
zrhnm.1 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
zrhnm | ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ NzRing) | |
2 | nzrring 20630 | . . . . 5 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑅 ∈ Ring) |
4 | simpr 485 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
5 | zrhnm.1 | . . . . . 6 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
6 | eqid 2736 | . . . . . 6 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
7 | eqid 2736 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | 5, 6, 7 | zrhmulg 20809 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
9 | 8 | fveq2d 6823 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
10 | 3, 4, 9 | syl2anc 584 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅)))) |
11 | simpl1 1190 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmMod) | |
12 | nmmulg.x | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
13 | 12, 7 | ringidcl 19894 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
14 | 3, 13 | syl 17 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ∈ 𝐵) |
15 | nmmulg.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑅) | |
16 | nmmulg.z | . . . . 5 ⊢ 𝑍 = (ℤMod‘𝑅) | |
17 | 12, 15, 16, 6 | nmmulg 32157 | . . . 4 ⊢ ((𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ (1r‘𝑅) ∈ 𝐵) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
18 | 11, 4, 14, 17 | syl3anc 1370 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝑀(.g‘𝑅)(1r‘𝑅))) = ((abs‘𝑀) · (𝑁‘(1r‘𝑅)))) |
19 | 16, 15 | zlmnm 32155 | . . . . . . 7 ⊢ (𝑅 ∈ NzRing → 𝑁 = (norm‘𝑍)) |
20 | 1, 19 | syl 17 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑁 = (norm‘𝑍)) |
21 | 20 | fveq1d 6821 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = ((norm‘𝑍)‘(1r‘𝑅))) |
22 | simpl2 1191 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NrmRing) | |
23 | nrgring 23925 | . . . . . . . 8 ⊢ (𝑍 ∈ NrmRing → 𝑍 ∈ Ring) | |
24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ Ring) |
25 | eqid 2736 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
26 | 7, 25 | nzrnz 20629 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
27 | 1, 26 | syl 17 | . . . . . . 7 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (1r‘𝑅) ≠ (0g‘𝑅)) |
28 | 16, 7 | zlm1 32150 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑍) |
29 | 16, 25 | zlm0 32149 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑍) |
30 | 28, 29 | isnzr 20628 | . . . . . . 7 ⊢ (𝑍 ∈ NzRing ↔ (𝑍 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
31 | 24, 27, 30 | sylanbrc 583 | . . . . . 6 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑍 ∈ NzRing) |
32 | eqid 2736 | . . . . . . 7 ⊢ (norm‘𝑍) = (norm‘𝑍) | |
33 | 32, 28 | nm1 23929 | . . . . . 6 ⊢ ((𝑍 ∈ NrmRing ∧ 𝑍 ∈ NzRing) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
34 | 22, 31, 33 | syl2anc 584 | . . . . 5 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((norm‘𝑍)‘(1r‘𝑅)) = 1) |
35 | 21, 34 | eqtrd 2776 | . . . 4 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(1r‘𝑅)) = 1) |
36 | 35 | oveq2d 7345 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · (𝑁‘(1r‘𝑅))) = ((abs‘𝑀) · 1)) |
37 | 10, 18, 36 | 3eqtrd 2780 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = ((abs‘𝑀) · 1)) |
38 | 4 | zcnd 12520 | . . 3 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
39 | abscl 15081 | . . . 4 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℝ) | |
40 | 39 | recnd 11096 | . . 3 ⊢ (𝑀 ∈ ℂ → (abs‘𝑀) ∈ ℂ) |
41 | mulid1 11066 | . . 3 ⊢ ((abs‘𝑀) ∈ ℂ → ((abs‘𝑀) · 1) = (abs‘𝑀)) | |
42 | 38, 40, 41 | 3syl 18 | . 2 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → ((abs‘𝑀) · 1) = (abs‘𝑀)) |
43 | 37, 42 | eqtrd 2776 | 1 ⊢ (((𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing) ∧ 𝑀 ∈ ℤ) → (𝑁‘(𝐿‘𝑀)) = (abs‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 1c1 10965 · cmul 10969 ℤcz 12412 abscabs 15036 Basecbs 17001 0gc0g 17239 .gcmg 18788 1rcur 19824 Ringcrg 19870 NzRingcnzr 20626 ℤRHomczrh 20799 ℤModczlm 20800 normcnm 23830 NrmRingcnrg 23833 NrmModcnlm 23834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 ax-addf 11043 ax-mulf 11044 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-rp 12824 df-ico 13178 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-starv 17066 df-sca 17067 df-vsca 17068 df-ip 17069 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-0g 17241 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-mhm 18519 df-grp 18668 df-minusg 18669 df-mulg 18789 df-subg 18840 df-ghm 18920 df-cmn 19475 df-abl 19476 df-mgp 19808 df-ur 19825 df-ring 19872 df-cring 19873 df-rnghom 20046 df-subrg 20119 df-abv 20175 df-lmod 20223 df-nzr 20627 df-cnfld 20696 df-zring 20769 df-zrh 20803 df-zlm 20804 df-nm 23836 df-nrg 23839 df-nlm 23840 |
This theorem is referenced by: qqhnm 32179 |
Copyright terms: Public domain | W3C validator |