Step | Hyp | Ref
| Expression |
1 | | nrgring 23733 |
. . . 4
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) |
2 | | nrginvrcn.u |
. . . . 5
⊢ 𝑈 = (Unit‘𝑅) |
3 | | eqid 2738 |
. . . . 5
⊢
((mulGrp‘𝑅)
↾s 𝑈) =
((mulGrp‘𝑅)
↾s 𝑈) |
4 | 2, 3 | unitgrp 19824 |
. . . 4
⊢ (𝑅 ∈ Ring →
((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp) |
5 | 2, 3 | unitgrpbas 19823 |
. . . . 5
⊢ 𝑈 =
(Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
6 | | nrginvrcn.i |
. . . . . 6
⊢ 𝐼 = (invr‘𝑅) |
7 | 2, 3, 6 | invrfval 19830 |
. . . . 5
⊢ 𝐼 =
(invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
8 | 5, 7 | grpinvf 18541 |
. . . 4
⊢
(((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp → 𝐼:𝑈⟶𝑈) |
9 | 1, 4, 8 | 3syl 18 |
. . 3
⊢ (𝑅 ∈ NrmRing → 𝐼:𝑈⟶𝑈) |
10 | | 1rp 12663 |
. . . . . . . 8
⊢ 1 ∈
ℝ+ |
11 | 10 | ne0ii 4268 |
. . . . . . 7
⊢
ℝ+ ≠ ∅ |
12 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 𝑅 ∈ Ring) |
13 | | nrginvrcn.x |
. . . . . . . . . . . . . . . 16
⊢ 𝑋 = (Base‘𝑅) |
14 | 13, 2 | unitss 19817 |
. . . . . . . . . . . . . . 15
⊢ 𝑈 ⊆ 𝑋 |
15 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈) |
16 | 14, 15 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑋) |
17 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) |
18 | 14, 17 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑋) |
19 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝑅) = (1r‘𝑅) |
20 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) = (0g‘𝑅) |
21 | 13, 19, 20 | ring1eq0 19744 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
22 | 12, 16, 18, 21 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
23 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼‘𝑦) = (𝐼‘𝑦) |
24 | | nrgngp 23732 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) |
25 | | ngpms 23662 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp) |
26 | | msxms 23515 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ MetSp → 𝑅 ∈
∞MetSp) |
27 | 24, 25, 26 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ NrmRing → 𝑅 ∈
∞MetSp) |
28 | 27 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 𝑅 ∈ ∞MetSp) |
29 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) → 𝐼:𝑈⟶𝑈) |
30 | 29 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (𝐼‘𝑦) ∈ 𝑈) |
31 | 14, 30 | sselid 3915 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (𝐼‘𝑦) ∈ 𝑋) |
32 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(dist‘𝑅) =
(dist‘𝑅) |
33 | 13, 32 | xmseq0 23525 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ∞MetSp ∧
(𝐼‘𝑦) ∈ 𝑋 ∧ (𝐼‘𝑦) ∈ 𝑋) → (((𝐼‘𝑦)(dist‘𝑅)(𝐼‘𝑦)) = 0 ↔ (𝐼‘𝑦) = (𝐼‘𝑦))) |
34 | 28, 31, 31, 33 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (((𝐼‘𝑦)(dist‘𝑅)(𝐼‘𝑦)) = 0 ↔ (𝐼‘𝑦) = (𝐼‘𝑦))) |
35 | 23, 34 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → ((𝐼‘𝑦)(dist‘𝑅)(𝐼‘𝑦)) = 0) |
36 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 𝑟 ∈ ℝ+) |
37 | 36 | rpgt0d 12704 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → 0 < 𝑟) |
38 | 35, 37 | eqbrtrd 5092 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → ((𝐼‘𝑦)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟) |
39 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝐼‘𝑥) = (𝐼‘𝑦)) |
40 | 39 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) = ((𝐼‘𝑦)(dist‘𝑅)(𝐼‘𝑦))) |
41 | 40 | breq1d 5080 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟 ↔ ((𝐼‘𝑦)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
42 | 38, 41 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (𝑥 = 𝑦 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
43 | 22, 42 | syld 47 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → ((1r‘𝑅) = (0g‘𝑅) → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
44 | 43 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) ∧ (1r‘𝑅) = (0g‘𝑅)) → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟) |
45 | 44 | an32s 648 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅) =
(0g‘𝑅))
∧ 𝑦 ∈ 𝑈) → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟) |
46 | 45 | a1d 25 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅) =
(0g‘𝑅))
∧ 𝑦 ∈ 𝑈) → ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
47 | 46 | ralrimiva 3107 |
. . . . . . . 8
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅) =
(0g‘𝑅))
→ ∀𝑦 ∈
𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
48 | 47 | ralrimivw 3108 |
. . . . . . 7
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅) =
(0g‘𝑅))
→ ∀𝑠 ∈
ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
49 | | r19.2z 4422 |
. . . . . . 7
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑠 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
50 | 11, 48, 49 | sylancr 586 |
. . . . . 6
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅) =
(0g‘𝑅))
→ ∃𝑠 ∈
ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
51 | | eqid 2738 |
. . . . . . 7
⊢
(norm‘𝑅) =
(norm‘𝑅) |
52 | | simpll 763 |
. . . . . . 7
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → 𝑅 ∈ NrmRing) |
53 | 1 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → 𝑅 ∈ Ring) |
54 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → (1r‘𝑅) ≠
(0g‘𝑅)) |
55 | 19, 20 | isnzr 20443 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧
(1r‘𝑅)
≠ (0g‘𝑅))) |
56 | 53, 54, 55 | sylanbrc 582 |
. . . . . . 7
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → 𝑅 ∈ NzRing) |
57 | | simplrl 773 |
. . . . . . 7
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → 𝑥 ∈ 𝑈) |
58 | | simplrr 774 |
. . . . . . 7
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → 𝑟 ∈ ℝ+) |
59 | | eqid 2738 |
. . . . . . 7
⊢ (if(1
≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2)) = (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2)) |
60 | 13, 2, 6, 51, 32, 52, 56, 57, 58, 59 | nrginvrcnlem 23761 |
. . . . . 6
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧
(1r‘𝑅)
≠ (0g‘𝑅)) → ∃𝑠 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
61 | 50, 60 | pm2.61dane 3031 |
. . . . 5
⊢ ((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) →
∃𝑠 ∈
ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
62 | 15, 17 | ovresd 7417 |
. . . . . . . . 9
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) = (𝑥(dist‘𝑅)𝑦)) |
63 | 62 | breq1d 5080 |
. . . . . . . 8
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 ↔ (𝑥(dist‘𝑅)𝑦) < 𝑠)) |
64 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ 𝑈) |
65 | | ffvelrn 6941 |
. . . . . . . . . . . 12
⊢ ((𝐼:𝑈⟶𝑈 ∧ 𝑥 ∈ 𝑈) → (𝐼‘𝑥) ∈ 𝑈) |
66 | 9, 64, 65 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) → (𝐼‘𝑥) ∈ 𝑈) |
67 | 66 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (𝐼‘𝑥) ∈ 𝑈) |
68 | 67, 30 | ovresd 7417 |
. . . . . . . . 9
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) = ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦))) |
69 | 68 | breq1d 5080 |
. . . . . . . 8
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟 ↔ ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟)) |
70 | 63, 69 | imbi12d 344 |
. . . . . . 7
⊢ (((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑦 ∈ 𝑈) → (((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟) ↔ ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟))) |
71 | 70 | ralbidva 3119 |
. . . . . 6
⊢ ((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) →
(∀𝑦 ∈ 𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟) ↔ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟))) |
72 | 71 | rexbidv 3225 |
. . . . 5
⊢ ((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) →
(∃𝑠 ∈
ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼‘𝑥)(dist‘𝑅)(𝐼‘𝑦)) < 𝑟))) |
73 | 61, 72 | mpbird 256 |
. . . 4
⊢ ((𝑅 ∈ NrmRing ∧ (𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+)) →
∃𝑠 ∈
ℝ+ ∀𝑦 ∈ 𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟)) |
74 | 73 | ralrimivva 3114 |
. . 3
⊢ (𝑅 ∈ NrmRing →
∀𝑥 ∈ 𝑈 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑦 ∈ 𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟)) |
75 | | xpss12 5595 |
. . . . . . 7
⊢ ((𝑈 ⊆ 𝑋 ∧ 𝑈 ⊆ 𝑋) → (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋)) |
76 | 14, 14, 75 | mp2an 688 |
. . . . . 6
⊢ (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋) |
77 | | resabs1 5910 |
. . . . . 6
⊢ ((𝑈 × 𝑈) ⊆ (𝑋 × 𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈))) |
78 | 76, 77 | ax-mp 5 |
. . . . 5
⊢
(((dist‘𝑅)
↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈)) |
79 | | eqid 2738 |
. . . . . . . 8
⊢
((dist‘𝑅)
↾ (𝑋 × 𝑋)) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) |
80 | 13, 79 | xmsxmet 23517 |
. . . . . . 7
⊢ (𝑅 ∈ ∞MetSp →
((dist‘𝑅) ↾
(𝑋 × 𝑋)) ∈
(∞Met‘𝑋)) |
81 | 24, 25, 26, 80 | 4syl 19 |
. . . . . 6
⊢ (𝑅 ∈ NrmRing →
((dist‘𝑅) ↾
(𝑋 × 𝑋)) ∈
(∞Met‘𝑋)) |
82 | | xmetres2 23422 |
. . . . . 6
⊢
((((dist‘𝑅)
↾ (𝑋 × 𝑋)) ∈
(∞Met‘𝑋) ∧
𝑈 ⊆ 𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈)) |
83 | 81, 14, 82 | sylancl 585 |
. . . . 5
⊢ (𝑅 ∈ NrmRing →
(((dist‘𝑅) ↾
(𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈)) |
84 | 78, 83 | eqeltrrid 2844 |
. . . 4
⊢ (𝑅 ∈ NrmRing →
((dist‘𝑅) ↾
(𝑈 × 𝑈)) ∈
(∞Met‘𝑈)) |
85 | | eqid 2738 |
. . . . 5
⊢
(MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) |
86 | 85, 85 | metcn 23605 |
. . . 4
⊢
((((dist‘𝑅)
↾ (𝑈 × 𝑈)) ∈
(∞Met‘𝑈) ∧
((dist‘𝑅) ↾
(𝑈 × 𝑈)) ∈
(∞Met‘𝑈))
→ (𝐼 ∈
((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈⟶𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑦 ∈ 𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟)))) |
87 | 84, 84, 86 | syl2anc 583 |
. . 3
⊢ (𝑅 ∈ NrmRing → (𝐼 ∈
((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈⟶𝑈 ∧ ∀𝑥 ∈ 𝑈 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑦 ∈ 𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼‘𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼‘𝑦)) < 𝑟)))) |
88 | 9, 74, 87 | mpbir2and 709 |
. 2
⊢ (𝑅 ∈ NrmRing → 𝐼 ∈
((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))) |
89 | | nrginvrcn.j |
. . . . . . 7
⊢ 𝐽 = (TopOpen‘𝑅) |
90 | 89, 13, 79 | mstopn 23513 |
. . . . . 6
⊢ (𝑅 ∈ MetSp → 𝐽 =
(MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋)))) |
91 | 24, 25, 90 | 3syl 18 |
. . . . 5
⊢ (𝑅 ∈ NrmRing → 𝐽 =
(MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋)))) |
92 | 91 | oveq1d 7270 |
. . . 4
⊢ (𝑅 ∈ NrmRing → (𝐽 ↾t 𝑈) =
((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈)) |
93 | 78 | eqcomi 2747 |
. . . . . 6
⊢
((dist‘𝑅)
↾ (𝑈 × 𝑈)) = (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) |
94 | | eqid 2738 |
. . . . . 6
⊢
(MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) |
95 | 93, 94, 85 | metrest 23586 |
. . . . 5
⊢
((((dist‘𝑅)
↾ (𝑋 × 𝑋)) ∈
(∞Met‘𝑋) ∧
𝑈 ⊆ 𝑋) → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) |
96 | 81, 14, 95 | sylancl 585 |
. . . 4
⊢ (𝑅 ∈ NrmRing →
((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) |
97 | 92, 96 | eqtrd 2778 |
. . 3
⊢ (𝑅 ∈ NrmRing → (𝐽 ↾t 𝑈) =
(MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) |
98 | 97, 97 | oveq12d 7273 |
. 2
⊢ (𝑅 ∈ NrmRing → ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈)) = ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))) |
99 | 88, 98 | eleqtrrd 2842 |
1
⊢ (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) |