MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Visualization version   GIF version

Theorem nrginvrcn 24605
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x 𝑋 = (Base‘𝑅)
nrginvrcn.u 𝑈 = (Unit‘𝑅)
nrginvrcn.i 𝐼 = (invr𝑅)
nrginvrcn.j 𝐽 = (TopOpen‘𝑅)
Assertion
Ref Expression
nrginvrcn (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))

Proof of Theorem nrginvrcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgring 24576 . . . 4 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
2 nrginvrcn.u . . . . 5 𝑈 = (Unit‘𝑅)
3 eqid 2731 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
42, 3unitgrp 20299 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
52, 3unitgrpbas 20298 . . . . 5 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
6 nrginvrcn.i . . . . . 6 𝐼 = (invr𝑅)
72, 3, 6invrfval 20305 . . . . 5 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
85, 7grpinvf 18896 . . . 4 (((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp → 𝐼:𝑈𝑈)
91, 4, 83syl 18 . . 3 (𝑅 ∈ NrmRing → 𝐼:𝑈𝑈)
10 1rp 12891 . . . . . . . 8 1 ∈ ℝ+
1110ne0ii 4294 . . . . . . 7 + ≠ ∅
121ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
13 nrginvrcn.x . . . . . . . . . . . . . . . 16 𝑋 = (Base‘𝑅)
1413, 2unitss 20292 . . . . . . . . . . . . . . 15 𝑈𝑋
15 simplrl 776 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑈)
1614, 15sselid 3932 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑋)
17 simpr 484 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑈)
1814, 17sselid 3932 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑋)
19 eqid 2731 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
20 eqid 2731 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
2113, 19, 20ring1eq0 20214 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑥𝑋𝑦𝑋) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
2212, 16, 18, 21syl3anc 1373 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
23 eqid 2731 . . . . . . . . . . . . . . . 16 (𝐼𝑦) = (𝐼𝑦)
24 nrgngp 24575 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
25 ngpms 24513 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp)
26 msxms 24367 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ NrmRing → 𝑅 ∈ ∞MetSp)
2827ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ ∞MetSp)
299adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → 𝐼:𝑈𝑈)
3029ffvelcdmda 7017 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑈)
3114, 30sselid 3932 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑋)
32 eqid 2731 . . . . . . . . . . . . . . . . . 18 (dist‘𝑅) = (dist‘𝑅)
3313, 32xmseq0 24377 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ∞MetSp ∧ (𝐼𝑦) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3428, 31, 31, 33syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3523, 34mpbiri 258 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0)
36 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑟 ∈ ℝ+)
3736rpgt0d 12934 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 0 < 𝑟)
3835, 37eqbrtrd 5113 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
39 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
4039oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) = ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)))
4140breq1d 5101 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4238, 41syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4322, 42syld 47 . . . . . . . . . . . 12 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4443imp 406 . . . . . . . . . . 11 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) ∧ (1r𝑅) = (0g𝑅)) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4544an32s 652 . . . . . . . . . 10 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4645a1d 25 . . . . . . . . 9 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4746ralrimiva 3124 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4847ralrimivw 3128 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
49 r19.2z 4445 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
5011, 48, 49sylancr 587 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
51 eqid 2731 . . . . . . 7 (norm‘𝑅) = (norm‘𝑅)
52 simpll 766 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NrmRing)
531ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ Ring)
54 simpr 484 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
5519, 20isnzr 20427 . . . . . . . 8 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5653, 54, 55sylanbrc 583 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NzRing)
57 simplrl 776 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑥𝑈)
58 simplrr 777 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑟 ∈ ℝ+)
59 eqid 2731 . . . . . . 7 (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2)) = (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2))
6013, 2, 6, 51, 32, 52, 56, 57, 58, 59nrginvrcnlem 24604 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6150, 60pm2.61dane 3015 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6215, 17ovresd 7513 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) = (𝑥(dist‘𝑅)𝑦))
6362breq1d 5101 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 ↔ (𝑥(dist‘𝑅)𝑦) < 𝑠))
64 simpl 482 . . . . . . . . . . . 12 ((𝑥𝑈𝑟 ∈ ℝ+) → 𝑥𝑈)
65 ffvelcdm 7014 . . . . . . . . . . . 12 ((𝐼:𝑈𝑈𝑥𝑈) → (𝐼𝑥) ∈ 𝑈)
669, 64, 65syl2an 596 . . . . . . . . . . 11 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (𝐼𝑥) ∈ 𝑈)
6766adantr 480 . . . . . . . . . 10 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑥) ∈ 𝑈)
6867, 30ovresd 7513 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) = ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)))
6968breq1d 5101 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
7063, 69imbi12d 344 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7170ralbidva 3153 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∀𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7271rexbidv 3156 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7361, 72mpbird 257 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
7473ralrimivva 3175 . . 3 (𝑅 ∈ NrmRing → ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
75 xpss12 5631 . . . . . . 7 ((𝑈𝑋𝑈𝑋) → (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋))
7614, 14, 75mp2an 692 . . . . . 6 (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋)
77 resabs1 5955 . . . . . 6 ((𝑈 × 𝑈) ⊆ (𝑋 × 𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈)))
7876, 77ax-mp 5 . . . . 5 (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈))
79 eqid 2731 . . . . . . . 8 ((dist‘𝑅) ↾ (𝑋 × 𝑋)) = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
8013, 79xmsxmet 24369 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
8124, 25, 26, 804syl 19 . . . . . 6 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
82 xmetres2 24274 . . . . . 6 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8381, 14, 82sylancl 586 . . . . 5 (𝑅 ∈ NrmRing → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8478, 83eqeltrrid 2836 . . . 4 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
85 eqid 2731 . . . . 5 (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))
8685, 85metcn 24456 . . . 4 ((((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈) ∧ ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈)) → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
8784, 84, 86syl2anc 584 . . 3 (𝑅 ∈ NrmRing → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
889, 74, 87mpbir2and 713 . 2 (𝑅 ∈ NrmRing → 𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
89 nrginvrcn.j . . . . . . 7 𝐽 = (TopOpen‘𝑅)
9089, 13, 79mstopn 24365 . . . . . 6 (𝑅 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9124, 25, 903syl 18 . . . . 5 (𝑅 ∈ NrmRing → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9291oveq1d 7361 . . . 4 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈))
9378eqcomi 2740 . . . . . 6 ((dist‘𝑅) ↾ (𝑈 × 𝑈)) = (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈))
94 eqid 2731 . . . . . 6 (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋)))
9593, 94, 85metrest 24437 . . . . 5 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9681, 14, 95sylancl 586 . . . 4 (𝑅 ∈ NrmRing → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9792, 96eqtrd 2766 . . 3 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9897, 97oveq12d 7364 . 2 (𝑅 ∈ NrmRing → ((𝐽t 𝑈) Cn (𝐽t 𝑈)) = ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
9988, 98eleqtrrd 2834 1 (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3902  c0 4283  ifcif 4475   class class class wbr 5091   × cxp 5614  cres 5618  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   · cmul 11008   < clt 11143  cle 11144   / cdiv 11771  2c2 12177  +crp 12887  Basecbs 17117  s cress 17138  distcds 17167  t crest 17321  TopOpenctopn 17322  0gc0g 17340  Grpcgrp 18843  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  Unitcui 20271  invrcinvr 20303  NzRingcnzr 20425  ∞Metcxmet 21274  MetOpencmopn 21279   Cn ccn 23137  ∞MetSpcxms 24230  MetSpcms 24231  normcnm 24489  NrmGrpcngp 24490  NrmRingcnrg 24492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-tset 17177  df-ple 17178  df-ds 17180  df-rest 17323  df-0g 17342  df-topgen 17344  df-xrs 17403  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-sbg 18848  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20426  df-abv 20722  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cn 23140  df-cnp 23141  df-xms 24233  df-ms 24234  df-nm 24495  df-ngp 24496  df-nrg 24498
This theorem is referenced by:  nrgtdrg  24606
  Copyright terms: Public domain W3C validator