MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Visualization version   GIF version

Theorem nrginvrcn 23562
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x 𝑋 = (Base‘𝑅)
nrginvrcn.u 𝑈 = (Unit‘𝑅)
nrginvrcn.i 𝐼 = (invr𝑅)
nrginvrcn.j 𝐽 = (TopOpen‘𝑅)
Assertion
Ref Expression
nrginvrcn (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))

Proof of Theorem nrginvrcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgring 23533 . . . 4 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
2 nrginvrcn.u . . . . 5 𝑈 = (Unit‘𝑅)
3 eqid 2734 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
42, 3unitgrp 19657 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
52, 3unitgrpbas 19656 . . . . 5 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
6 nrginvrcn.i . . . . . 6 𝐼 = (invr𝑅)
72, 3, 6invrfval 19663 . . . . 5 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
85, 7grpinvf 18386 . . . 4 (((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp → 𝐼:𝑈𝑈)
91, 4, 83syl 18 . . 3 (𝑅 ∈ NrmRing → 𝐼:𝑈𝑈)
10 1rp 12573 . . . . . . . 8 1 ∈ ℝ+
1110ne0ii 4242 . . . . . . 7 + ≠ ∅
121ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
13 nrginvrcn.x . . . . . . . . . . . . . . . 16 𝑋 = (Base‘𝑅)
1413, 2unitss 19650 . . . . . . . . . . . . . . 15 𝑈𝑋
15 simplrl 777 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑈)
1614, 15sseldi 3889 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑋)
17 simpr 488 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑈)
1814, 17sseldi 3889 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑋)
19 eqid 2734 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
20 eqid 2734 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
2113, 19, 20ring1eq0 19580 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑥𝑋𝑦𝑋) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
2212, 16, 18, 21syl3anc 1373 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
23 eqid 2734 . . . . . . . . . . . . . . . 16 (𝐼𝑦) = (𝐼𝑦)
24 nrgngp 23532 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
25 ngpms 23470 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp)
26 msxms 23324 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ NrmRing → 𝑅 ∈ ∞MetSp)
2827ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ ∞MetSp)
299adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → 𝐼:𝑈𝑈)
3029ffvelrnda 6893 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑈)
3114, 30sseldi 3889 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑋)
32 eqid 2734 . . . . . . . . . . . . . . . . . 18 (dist‘𝑅) = (dist‘𝑅)
3313, 32xmseq0 23334 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ∞MetSp ∧ (𝐼𝑦) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3428, 31, 31, 33syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3523, 34mpbiri 261 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0)
36 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑟 ∈ ℝ+)
3736rpgt0d 12614 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 0 < 𝑟)
3835, 37eqbrtrd 5065 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
39 fveq2 6706 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
4039oveq1d 7217 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) = ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)))
4140breq1d 5053 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4238, 41syl5ibrcom 250 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4322, 42syld 47 . . . . . . . . . . . 12 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4443imp 410 . . . . . . . . . . 11 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) ∧ (1r𝑅) = (0g𝑅)) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4544an32s 652 . . . . . . . . . 10 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4645a1d 25 . . . . . . . . 9 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4746ralrimiva 3098 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4847ralrimivw 3099 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
49 r19.2z 4396 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
5011, 48, 49sylancr 590 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
51 eqid 2734 . . . . . . 7 (norm‘𝑅) = (norm‘𝑅)
52 simpll 767 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NrmRing)
531ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ Ring)
54 simpr 488 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
5519, 20isnzr 20269 . . . . . . . 8 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5653, 54, 55sylanbrc 586 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NzRing)
57 simplrl 777 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑥𝑈)
58 simplrr 778 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑟 ∈ ℝ+)
59 eqid 2734 . . . . . . 7 (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2)) = (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2))
6013, 2, 6, 51, 32, 52, 56, 57, 58, 59nrginvrcnlem 23561 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6150, 60pm2.61dane 3022 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6215, 17ovresd 7364 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) = (𝑥(dist‘𝑅)𝑦))
6362breq1d 5053 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 ↔ (𝑥(dist‘𝑅)𝑦) < 𝑠))
64 simpl 486 . . . . . . . . . . . 12 ((𝑥𝑈𝑟 ∈ ℝ+) → 𝑥𝑈)
65 ffvelrn 6891 . . . . . . . . . . . 12 ((𝐼:𝑈𝑈𝑥𝑈) → (𝐼𝑥) ∈ 𝑈)
669, 64, 65syl2an 599 . . . . . . . . . . 11 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (𝐼𝑥) ∈ 𝑈)
6766adantr 484 . . . . . . . . . 10 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑥) ∈ 𝑈)
6867, 30ovresd 7364 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) = ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)))
6968breq1d 5053 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
7063, 69imbi12d 348 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7170ralbidva 3110 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∀𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7271rexbidv 3209 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7361, 72mpbird 260 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
7473ralrimivva 3105 . . 3 (𝑅 ∈ NrmRing → ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
75 xpss12 5555 . . . . . . 7 ((𝑈𝑋𝑈𝑋) → (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋))
7614, 14, 75mp2an 692 . . . . . 6 (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋)
77 resabs1 5870 . . . . . 6 ((𝑈 × 𝑈) ⊆ (𝑋 × 𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈)))
7876, 77ax-mp 5 . . . . 5 (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈))
79 eqid 2734 . . . . . . . 8 ((dist‘𝑅) ↾ (𝑋 × 𝑋)) = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
8013, 79xmsxmet 23326 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
8124, 25, 26, 804syl 19 . . . . . 6 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
82 xmetres2 23231 . . . . . 6 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8381, 14, 82sylancl 589 . . . . 5 (𝑅 ∈ NrmRing → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8478, 83eqeltrrid 2839 . . . 4 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
85 eqid 2734 . . . . 5 (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))
8685, 85metcn 23413 . . . 4 ((((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈) ∧ ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈)) → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
8784, 84, 86syl2anc 587 . . 3 (𝑅 ∈ NrmRing → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
889, 74, 87mpbir2and 713 . 2 (𝑅 ∈ NrmRing → 𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
89 nrginvrcn.j . . . . . . 7 𝐽 = (TopOpen‘𝑅)
9089, 13, 79mstopn 23322 . . . . . 6 (𝑅 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9124, 25, 903syl 18 . . . . 5 (𝑅 ∈ NrmRing → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9291oveq1d 7217 . . . 4 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈))
9378eqcomi 2743 . . . . . 6 ((dist‘𝑅) ↾ (𝑈 × 𝑈)) = (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈))
94 eqid 2734 . . . . . 6 (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋)))
9593, 94, 85metrest 23394 . . . . 5 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9681, 14, 95sylancl 589 . . . 4 (𝑅 ∈ NrmRing → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9792, 96eqtrd 2774 . . 3 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9897, 97oveq12d 7220 . 2 (𝑅 ∈ NrmRing → ((𝐽t 𝑈) Cn (𝐽t 𝑈)) = ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
9988, 98eleqtrrd 2837 1 (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  wss 3857  c0 4227  ifcif 4429   class class class wbr 5043   × cxp 5538  cres 5542  wf 6365  cfv 6369  (class class class)co 7202  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  cle 10851   / cdiv 11472  2c2 11868  +crp 12569  Basecbs 16684  s cress 16685  distcds 16776  t crest 16897  TopOpenctopn 16898  0gc0g 16916  Grpcgrp 18337  mulGrpcmgp 19476  1rcur 19488  Ringcrg 19534  Unitcui 19629  invrcinvr 19661  NzRingcnzr 20267  ∞Metcxmet 20320  MetOpencmopn 20325   Cn ccn 22093  ∞MetSpcxms 23187  MetSpcms 23188  normcnm 23446  NrmGrpcngp 23447  NrmRingcnrg 23449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-fz 13079  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-tset 16786  df-ple 16787  df-ds 16789  df-rest 16899  df-0g 16918  df-topgen 16920  df-xrs 16979  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-sbg 18342  df-mgp 19477  df-ur 19489  df-ring 19536  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-abv 19825  df-nzr 20268  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cn 22096  df-cnp 22097  df-xms 23190  df-ms 23191  df-nm 23452  df-ngp 23453  df-nrg 23455
This theorem is referenced by:  nrgtdrg  23563
  Copyright terms: Public domain W3C validator