MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Visualization version   GIF version

Theorem nrginvrcn 23856
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x 𝑋 = (Base‘𝑅)
nrginvrcn.u 𝑈 = (Unit‘𝑅)
nrginvrcn.i 𝐼 = (invr𝑅)
nrginvrcn.j 𝐽 = (TopOpen‘𝑅)
Assertion
Ref Expression
nrginvrcn (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))

Proof of Theorem nrginvrcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgring 23827 . . . 4 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
2 nrginvrcn.u . . . . 5 𝑈 = (Unit‘𝑅)
3 eqid 2738 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
42, 3unitgrp 19909 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
52, 3unitgrpbas 19908 . . . . 5 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
6 nrginvrcn.i . . . . . 6 𝐼 = (invr𝑅)
72, 3, 6invrfval 19915 . . . . 5 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
85, 7grpinvf 18626 . . . 4 (((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp → 𝐼:𝑈𝑈)
91, 4, 83syl 18 . . 3 (𝑅 ∈ NrmRing → 𝐼:𝑈𝑈)
10 1rp 12734 . . . . . . . 8 1 ∈ ℝ+
1110ne0ii 4271 . . . . . . 7 + ≠ ∅
121ad2antrr 723 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
13 nrginvrcn.x . . . . . . . . . . . . . . . 16 𝑋 = (Base‘𝑅)
1413, 2unitss 19902 . . . . . . . . . . . . . . 15 𝑈𝑋
15 simplrl 774 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑈)
1614, 15sselid 3919 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑋)
17 simpr 485 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑈)
1814, 17sselid 3919 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑋)
19 eqid 2738 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
20 eqid 2738 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
2113, 19, 20ring1eq0 19829 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑥𝑋𝑦𝑋) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
2212, 16, 18, 21syl3anc 1370 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
23 eqid 2738 . . . . . . . . . . . . . . . 16 (𝐼𝑦) = (𝐼𝑦)
24 nrgngp 23826 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
25 ngpms 23756 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp)
26 msxms 23607 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ NrmRing → 𝑅 ∈ ∞MetSp)
2827ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ ∞MetSp)
299adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → 𝐼:𝑈𝑈)
3029ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑈)
3114, 30sselid 3919 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑋)
32 eqid 2738 . . . . . . . . . . . . . . . . . 18 (dist‘𝑅) = (dist‘𝑅)
3313, 32xmseq0 23617 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ∞MetSp ∧ (𝐼𝑦) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3428, 31, 31, 33syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3523, 34mpbiri 257 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0)
36 simplrr 775 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑟 ∈ ℝ+)
3736rpgt0d 12775 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 0 < 𝑟)
3835, 37eqbrtrd 5096 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
39 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
4039oveq1d 7290 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) = ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)))
4140breq1d 5084 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4238, 41syl5ibrcom 246 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4322, 42syld 47 . . . . . . . . . . . 12 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4443imp 407 . . . . . . . . . . 11 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) ∧ (1r𝑅) = (0g𝑅)) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4544an32s 649 . . . . . . . . . 10 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4645a1d 25 . . . . . . . . 9 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4746ralrimiva 3103 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4847ralrimivw 3104 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
49 r19.2z 4425 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
5011, 48, 49sylancr 587 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
51 eqid 2738 . . . . . . 7 (norm‘𝑅) = (norm‘𝑅)
52 simpll 764 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NrmRing)
531ad2antrr 723 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ Ring)
54 simpr 485 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
5519, 20isnzr 20530 . . . . . . . 8 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5653, 54, 55sylanbrc 583 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NzRing)
57 simplrl 774 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑥𝑈)
58 simplrr 775 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑟 ∈ ℝ+)
59 eqid 2738 . . . . . . 7 (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2)) = (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2))
6013, 2, 6, 51, 32, 52, 56, 57, 58, 59nrginvrcnlem 23855 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6150, 60pm2.61dane 3032 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6215, 17ovresd 7439 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) = (𝑥(dist‘𝑅)𝑦))
6362breq1d 5084 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 ↔ (𝑥(dist‘𝑅)𝑦) < 𝑠))
64 simpl 483 . . . . . . . . . . . 12 ((𝑥𝑈𝑟 ∈ ℝ+) → 𝑥𝑈)
65 ffvelrn 6959 . . . . . . . . . . . 12 ((𝐼:𝑈𝑈𝑥𝑈) → (𝐼𝑥) ∈ 𝑈)
669, 64, 65syl2an 596 . . . . . . . . . . 11 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (𝐼𝑥) ∈ 𝑈)
6766adantr 481 . . . . . . . . . 10 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑥) ∈ 𝑈)
6867, 30ovresd 7439 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) = ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)))
6968breq1d 5084 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
7063, 69imbi12d 345 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7170ralbidva 3111 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∀𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7271rexbidv 3226 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7361, 72mpbird 256 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
7473ralrimivva 3123 . . 3 (𝑅 ∈ NrmRing → ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
75 xpss12 5604 . . . . . . 7 ((𝑈𝑋𝑈𝑋) → (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋))
7614, 14, 75mp2an 689 . . . . . 6 (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋)
77 resabs1 5921 . . . . . 6 ((𝑈 × 𝑈) ⊆ (𝑋 × 𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈)))
7876, 77ax-mp 5 . . . . 5 (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈))
79 eqid 2738 . . . . . . . 8 ((dist‘𝑅) ↾ (𝑋 × 𝑋)) = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
8013, 79xmsxmet 23609 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
8124, 25, 26, 804syl 19 . . . . . 6 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
82 xmetres2 23514 . . . . . 6 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8381, 14, 82sylancl 586 . . . . 5 (𝑅 ∈ NrmRing → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8478, 83eqeltrrid 2844 . . . 4 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
85 eqid 2738 . . . . 5 (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))
8685, 85metcn 23699 . . . 4 ((((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈) ∧ ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈)) → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
8784, 84, 86syl2anc 584 . . 3 (𝑅 ∈ NrmRing → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
889, 74, 87mpbir2and 710 . 2 (𝑅 ∈ NrmRing → 𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
89 nrginvrcn.j . . . . . . 7 𝐽 = (TopOpen‘𝑅)
9089, 13, 79mstopn 23605 . . . . . 6 (𝑅 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9124, 25, 903syl 18 . . . . 5 (𝑅 ∈ NrmRing → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9291oveq1d 7290 . . . 4 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈))
9378eqcomi 2747 . . . . . 6 ((dist‘𝑅) ↾ (𝑈 × 𝑈)) = (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈))
94 eqid 2738 . . . . . 6 (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋)))
9593, 94, 85metrest 23680 . . . . 5 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9681, 14, 95sylancl 586 . . . 4 (𝑅 ∈ NrmRing → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9792, 96eqtrd 2778 . . 3 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9897, 97oveq12d 7293 . 2 (𝑅 ∈ NrmRing → ((𝐽t 𝑈) Cn (𝐽t 𝑈)) = ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
9988, 98eleqtrrd 2842 1 (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256  ifcif 4459   class class class wbr 5074   × cxp 5587  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  2c2 12028  +crp 12730  Basecbs 16912  s cress 16941  distcds 16971  t crest 17131  TopOpenctopn 17132  0gc0g 17150  Grpcgrp 18577  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  Unitcui 19881  invrcinvr 19913  NzRingcnzr 20528  ∞Metcxmet 20582  MetOpencmopn 20587   Cn ccn 22375  ∞MetSpcxms 23470  MetSpcms 23471  normcnm 23732  NrmGrpcngp 23733  NrmRingcnrg 23735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ds 16984  df-rest 17133  df-0g 17152  df-topgen 17154  df-xrs 17213  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-abv 20077  df-nzr 20529  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nrg 23741
This theorem is referenced by:  nrgtdrg  23857
  Copyright terms: Public domain W3C validator