![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrnzr | Structured version Visualization version GIF version |
Description: Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
chrnzr | β’ (π β Ring β (π β NzRing β (chrβπ ) β 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
2 | eqid 2726 | . . . 4 β’ (0gβπ ) = (0gβπ ) | |
3 | 1, 2 | isnzr 20414 | . . 3 β’ (π β NzRing β (π β Ring β§ (1rβπ ) β (0gβπ ))) |
4 | 3 | baib 535 | . 2 β’ (π β Ring β (π β NzRing β (1rβπ ) β (0gβπ ))) |
5 | 1z 12593 | . . . . 5 β’ 1 β β€ | |
6 | eqid 2726 | . . . . . 6 β’ (chrβπ ) = (chrβπ ) | |
7 | eqid 2726 | . . . . . 6 β’ (β€RHomβπ ) = (β€RHomβπ ) | |
8 | 6, 7, 2 | chrdvds 21413 | . . . . 5 β’ ((π β Ring β§ 1 β β€) β ((chrβπ ) β₯ 1 β ((β€RHomβπ )β1) = (0gβπ ))) |
9 | 5, 8 | mpan2 688 | . . . 4 β’ (π β Ring β ((chrβπ ) β₯ 1 β ((β€RHomβπ )β1) = (0gβπ ))) |
10 | 6 | chrcl 21411 | . . . . 5 β’ (π β Ring β (chrβπ ) β β0) |
11 | dvds1 16267 | . . . . 5 β’ ((chrβπ ) β β0 β ((chrβπ ) β₯ 1 β (chrβπ ) = 1)) | |
12 | 10, 11 | syl 17 | . . . 4 β’ (π β Ring β ((chrβπ ) β₯ 1 β (chrβπ ) = 1)) |
13 | 7, 1 | zrh1 21395 | . . . . 5 β’ (π β Ring β ((β€RHomβπ )β1) = (1rβπ )) |
14 | 13 | eqeq1d 2728 | . . . 4 β’ (π β Ring β (((β€RHomβπ )β1) = (0gβπ ) β (1rβπ ) = (0gβπ ))) |
15 | 9, 12, 14 | 3bitr3d 309 | . . 3 β’ (π β Ring β ((chrβπ ) = 1 β (1rβπ ) = (0gβπ ))) |
16 | 15 | necon3bid 2979 | . 2 β’ (π β Ring β ((chrβπ ) β 1 β (1rβπ ) β (0gβπ ))) |
17 | 4, 16 | bitr4d 282 | 1 β’ (π β Ring β (π β NzRing β (chrβπ ) β 1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 β wne 2934 class class class wbr 5141 βcfv 6536 1c1 11110 β0cn0 12473 β€cz 12559 β₯ cdvds 16202 0gc0g 17392 1rcur 20084 Ringcrg 20136 NzRingcnzr 20412 β€RHomczrh 21382 chrcchr 21384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-fz 13488 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-dvds 16203 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19048 df-ghm 19137 df-od 19446 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-rhm 20372 df-nzr 20413 df-subrng 20444 df-subrg 20469 df-cnfld 21237 df-zring 21330 df-zrh 21386 df-chr 21388 |
This theorem is referenced by: domnchr 21419 |
Copyright terms: Public domain | W3C validator |