Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringelnzr | Structured version Visualization version GIF version |
Description: A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
ringelnzr.z | ⊢ 0 = (0g‘𝑅) |
ringelnzr.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
ringelnzr | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) | |
2 | eldifsni 4729 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
3 | 2 | adantl 483 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋 ≠ 0 ) |
4 | eldifi 4067 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
5 | 4 | adantl 483 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋 ∈ 𝐵) |
6 | ringelnzr.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
7 | ringelnzr.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | ring0cl 19853 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
9 | 8 | adantr 482 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 0 ∈ 𝐵) |
10 | eqid 2736 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
11 | 6, 10, 7 | ring1eq0 19874 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((1r‘𝑅) = 0 → 𝑋 = 0 )) |
12 | 1, 5, 9, 11 | syl3anc 1371 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → ((1r‘𝑅) = 0 → 𝑋 = 0 )) |
13 | 12 | necon3d 2962 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑋 ≠ 0 → (1r‘𝑅) ≠ 0 )) |
14 | 3, 13 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (1r‘𝑅) ≠ 0 ) |
15 | 10, 7 | isnzr 20575 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ 0 )) |
16 | 1, 14, 15 | sylanbrc 584 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∖ cdif 3889 {csn 4565 ‘cfv 6458 Basecbs 16957 0gc0g 17195 1rcur 19782 Ringcrg 19828 NzRingcnzr 20573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-minusg 18626 df-mgp 19766 df-ur 19783 df-ring 19830 df-nzr 20574 |
This theorem is referenced by: frlmlbs 21049 ply1nz 25331 qsidomlem2 31674 lindsadd 35814 |
Copyright terms: Public domain | W3C validator |