Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringelnzr | Structured version Visualization version GIF version |
Description: A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
ringelnzr.z | ⊢ 0 = (0g‘𝑅) |
ringelnzr.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
ringelnzr | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) | |
2 | eldifsni 4733 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋 ≠ 0 ) |
4 | eldifi 4071 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
5 | 4 | adantl 482 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋 ∈ 𝐵) |
6 | ringelnzr.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
7 | ringelnzr.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | ring0cl 19875 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 0 ∈ 𝐵) |
10 | eqid 2737 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
11 | 6, 10, 7 | ring1eq0 19896 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((1r‘𝑅) = 0 → 𝑋 = 0 )) |
12 | 1, 5, 9, 11 | syl3anc 1370 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → ((1r‘𝑅) = 0 → 𝑋 = 0 )) |
13 | 12 | necon3d 2962 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑋 ≠ 0 → (1r‘𝑅) ≠ 0 )) |
14 | 3, 13 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (1r‘𝑅) ≠ 0 ) |
15 | 10, 7 | isnzr 20601 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ 0 )) |
16 | 1, 14, 15 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∖ cdif 3893 {csn 4569 ‘cfv 6463 Basecbs 16979 0gc0g 17217 1rcur 19804 Ringcrg 19850 NzRingcnzr 20599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-plusg 17042 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-minusg 18648 df-mgp 19788 df-ur 19805 df-ring 19852 df-nzr 20600 |
This theorem is referenced by: frlmlbs 21075 ply1nz 25357 qsidomlem2 31734 lindsadd 35830 |
Copyright terms: Public domain | W3C validator |