![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringelnzr | Structured version Visualization version GIF version |
Description: A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
ringelnzr.z | ⊢ 0 = (0g‘𝑅) |
ringelnzr.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
ringelnzr | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) | |
2 | eldifsni 4789 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
3 | 2 | adantl 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋 ≠ 0 ) |
4 | eldifi 4119 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
5 | 4 | adantl 480 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑋 ∈ 𝐵) |
6 | ringelnzr.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
7 | ringelnzr.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | ring0cl 20207 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 0 ∈ 𝐵) |
10 | eqid 2725 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
11 | 6, 10, 7 | ring1eq0 20238 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((1r‘𝑅) = 0 → 𝑋 = 0 )) |
12 | 1, 5, 9, 11 | syl3anc 1368 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → ((1r‘𝑅) = 0 → 𝑋 = 0 )) |
13 | 12 | necon3d 2951 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (𝑋 ≠ 0 → (1r‘𝑅) ≠ 0 )) |
14 | 3, 13 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → (1r‘𝑅) ≠ 0 ) |
15 | 10, 7 | isnzr 20457 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ 0 )) |
16 | 1, 14, 15 | sylanbrc 581 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∖ cdif 3936 {csn 4624 ‘cfv 6543 Basecbs 17179 0gc0g 17420 1rcur 20125 Ringcrg 20177 NzRingcnzr 20455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-minusg 18898 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-nzr 20456 |
This theorem is referenced by: frlmlbs 21735 ply1nz 26075 irrednzr 32992 qsidomlem2 33218 lindsadd 37143 |
Copyright terms: Public domain | W3C validator |