Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidlhash Structured version   Visualization version   GIF version

Theorem drngidlhash 33381
Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypothesis
Ref Expression
drngidlhash.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidlhash (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))

Proof of Theorem drngidlhash
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
3 drngidlhash.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21168 . . . . 5 (𝑅 ∈ DivRing → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
54fveq2d 6830 . . . 4 (𝑅 ∈ DivRing → (♯‘𝑈) = (♯‘{{(0g𝑅)}, (Base‘𝑅)}))
6 drngnzr 20651 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
7 nzrring 20419 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
8 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
91, 8ringidcl 20168 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
107, 9syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
118, 2nzrnz 20418 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
12 nelsn 4620 . . . . . . . . 9 ((1r𝑅) ≠ (0g𝑅) → ¬ (1r𝑅) ∈ {(0g𝑅)})
1311, 12syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → ¬ (1r𝑅) ∈ {(0g𝑅)})
14 nelne1 3022 . . . . . . . 8 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ {(0g𝑅)}) → (Base‘𝑅) ≠ {(0g𝑅)})
1510, 13, 14syl2anc 584 . . . . . . 7 (𝑅 ∈ NzRing → (Base‘𝑅) ≠ {(0g𝑅)})
1615necomd 2980 . . . . . 6 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
176, 16syl 17 . . . . 5 (𝑅 ∈ DivRing → {(0g𝑅)} ≠ (Base‘𝑅))
18 snex 5378 . . . . . 6 {(0g𝑅)} ∈ V
19 fvex 6839 . . . . . 6 (Base‘𝑅) ∈ V
20 hashprg 14320 . . . . . 6 (({(0g𝑅)} ∈ V ∧ (Base‘𝑅) ∈ V) → ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2))
2118, 19, 20mp2an 692 . . . . 5 ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
2217, 21sylib 218 . . . 4 (𝑅 ∈ DivRing → (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
235, 22eqtrd 2764 . . 3 (𝑅 ∈ DivRing → (♯‘𝑈) = 2)
2423adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ DivRing) → (♯‘𝑈) = 2)
25 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ Ring)
26 simplr 768 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 2)
27 2re 12220 . . . . . . . . . . 11 2 ∈ ℝ
2826, 27eqeltrdi 2836 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ∈ ℝ)
29 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑅 ∈ Ring)
30 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
3130fveq2d 6830 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
32 fvex 6839 . . . . . . . . . . . . . . . . . 18 (0g𝑅) ∈ V
33 hashsng 14294 . . . . . . . . . . . . . . . . . 18 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 (♯‘{(0g𝑅)}) = 1
3531, 34eqtr3di 2779 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘(Base‘𝑅)) = 1)
361, 20ringidl 33368 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (LIdeal‘𝑅) = {{(0g𝑅)}})
3729, 35, 36syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (LIdeal‘𝑅) = {{(0g𝑅)}})
383, 37eqtrid 2776 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}})
3938fveq2d 6830 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = (♯‘{{(0g𝑅)}}))
40 hashsng 14294 . . . . . . . . . . . . . 14 ({(0g𝑅)} ∈ V → (♯‘{{(0g𝑅)}}) = 1)
4118, 40ax-mp 5 . . . . . . . . . . . . 13 (♯‘{{(0g𝑅)}}) = 1
4239, 41eqtrdi 2780 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
4342adantlr 715 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
44 1lt2 12312 . . . . . . . . . . 11 1 < 2
4543, 44eqbrtrdi 5134 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) < 2)
4628, 45ltned 11270 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ≠ 2)
4746neneqd 2930 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ (♯‘𝑈) = 2)
4826, 47pm2.65da 816 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → ¬ {(0g𝑅)} = (Base‘𝑅))
4948neqned 2932 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ≠ (Base‘𝑅))
501, 2, 801eq0ring 20433 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
5150eqcomd 2735 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → {(0g𝑅)} = (Base‘𝑅))
5251ex 412 . . . . . . 7 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = (Base‘𝑅)))
5352necon3d 2946 . . . . . 6 (𝑅 ∈ Ring → ({(0g𝑅)} ≠ (Base‘𝑅) → (0g𝑅) ≠ (1r𝑅)))
5425, 49, 53sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (0g𝑅) ≠ (1r𝑅))
5554necomd 2980 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (1r𝑅) ≠ (0g𝑅))
568, 2isnzr 20417 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5725, 55, 56sylanbrc 583 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ NzRing)
583fvexi 6840 . . . . 5 𝑈 ∈ V
5958a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 ∈ V)
60 simpr 484 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (♯‘𝑈) = 2)
613, 2lidl0 21155 . . . . 5 (𝑅 ∈ Ring → {(0g𝑅)} ∈ 𝑈)
6225, 61syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ∈ 𝑈)
633, 1lidl1 21158 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) ∈ 𝑈)
6425, 63syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (Base‘𝑅) ∈ 𝑈)
65 hash2prd 14400 . . . . 5 ((𝑈 ∈ V ∧ (♯‘𝑈) = 2) → (({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6665imp 406 . . . 4 (((𝑈 ∈ V ∧ (♯‘𝑈) = 2) ∧ ({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅))) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
6759, 60, 62, 64, 49, 66syl23anc 1379 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
681, 2, 3drngidl 33380 . . . 4 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6968biimpar 477 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}) → 𝑅 ∈ DivRing)
7057, 67, 69syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ DivRing)
7124, 70impbida 800 1 (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  {csn 4579  {cpr 4581  cfv 6486  cr 11027  1c1 11029   < clt 11168  2c2 12201  chash 14255  Basecbs 17138  0gc0g 17361  1rcur 20084  Ringcrg 20136  NzRingcnzr 20415  DivRingcdr 20632  LIdealclidl 21131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator