Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidlhash Structured version   Visualization version   GIF version

Theorem drngidlhash 33427
Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypothesis
Ref Expression
drngidlhash.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidlhash (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))

Proof of Theorem drngidlhash
StepHypRef Expression
1 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
3 drngidlhash.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21276 . . . . 5 (𝑅 ∈ DivRing → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
54fveq2d 6924 . . . 4 (𝑅 ∈ DivRing → (♯‘𝑈) = (♯‘{{(0g𝑅)}, (Base‘𝑅)}))
6 drngnzr 20770 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
7 nzrring 20542 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
8 eqid 2740 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
91, 8ringidcl 20289 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
107, 9syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
118, 2nzrnz 20541 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
12 nelsn 4688 . . . . . . . . 9 ((1r𝑅) ≠ (0g𝑅) → ¬ (1r𝑅) ∈ {(0g𝑅)})
1311, 12syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → ¬ (1r𝑅) ∈ {(0g𝑅)})
14 nelne1 3045 . . . . . . . 8 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ {(0g𝑅)}) → (Base‘𝑅) ≠ {(0g𝑅)})
1510, 13, 14syl2anc 583 . . . . . . 7 (𝑅 ∈ NzRing → (Base‘𝑅) ≠ {(0g𝑅)})
1615necomd 3002 . . . . . 6 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
176, 16syl 17 . . . . 5 (𝑅 ∈ DivRing → {(0g𝑅)} ≠ (Base‘𝑅))
18 snex 5451 . . . . . 6 {(0g𝑅)} ∈ V
19 fvex 6933 . . . . . 6 (Base‘𝑅) ∈ V
20 hashprg 14444 . . . . . 6 (({(0g𝑅)} ∈ V ∧ (Base‘𝑅) ∈ V) → ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2))
2118, 19, 20mp2an 691 . . . . 5 ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
2217, 21sylib 218 . . . 4 (𝑅 ∈ DivRing → (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
235, 22eqtrd 2780 . . 3 (𝑅 ∈ DivRing → (♯‘𝑈) = 2)
2423adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ DivRing) → (♯‘𝑈) = 2)
25 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ Ring)
26 simplr 768 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 2)
27 2re 12367 . . . . . . . . . . 11 2 ∈ ℝ
2826, 27eqeltrdi 2852 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ∈ ℝ)
29 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑅 ∈ Ring)
30 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
3130fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
32 fvex 6933 . . . . . . . . . . . . . . . . . 18 (0g𝑅) ∈ V
33 hashsng 14418 . . . . . . . . . . . . . . . . . 18 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 (♯‘{(0g𝑅)}) = 1
3531, 34eqtr3di 2795 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘(Base‘𝑅)) = 1)
361, 20ringidl 33414 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (LIdeal‘𝑅) = {{(0g𝑅)}})
3729, 35, 36syl2anc 583 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (LIdeal‘𝑅) = {{(0g𝑅)}})
383, 37eqtrid 2792 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}})
3938fveq2d 6924 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = (♯‘{{(0g𝑅)}}))
40 hashsng 14418 . . . . . . . . . . . . . 14 ({(0g𝑅)} ∈ V → (♯‘{{(0g𝑅)}}) = 1)
4118, 40ax-mp 5 . . . . . . . . . . . . 13 (♯‘{{(0g𝑅)}}) = 1
4239, 41eqtrdi 2796 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
4342adantlr 714 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
44 1lt2 12464 . . . . . . . . . . 11 1 < 2
4543, 44eqbrtrdi 5205 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) < 2)
4628, 45ltned 11426 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ≠ 2)
4746neneqd 2951 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ (♯‘𝑈) = 2)
4826, 47pm2.65da 816 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → ¬ {(0g𝑅)} = (Base‘𝑅))
4948neqned 2953 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ≠ (Base‘𝑅))
501, 2, 801eq0ring 20556 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
5150eqcomd 2746 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → {(0g𝑅)} = (Base‘𝑅))
5251ex 412 . . . . . . 7 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = (Base‘𝑅)))
5352necon3d 2967 . . . . . 6 (𝑅 ∈ Ring → ({(0g𝑅)} ≠ (Base‘𝑅) → (0g𝑅) ≠ (1r𝑅)))
5425, 49, 53sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (0g𝑅) ≠ (1r𝑅))
5554necomd 3002 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (1r𝑅) ≠ (0g𝑅))
568, 2isnzr 20540 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5725, 55, 56sylanbrc 582 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ NzRing)
583fvexi 6934 . . . . 5 𝑈 ∈ V
5958a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 ∈ V)
60 simpr 484 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (♯‘𝑈) = 2)
613, 2lidl0 21263 . . . . 5 (𝑅 ∈ Ring → {(0g𝑅)} ∈ 𝑈)
6225, 61syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ∈ 𝑈)
633, 1lidl1 21266 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) ∈ 𝑈)
6425, 63syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (Base‘𝑅) ∈ 𝑈)
65 hash2prd 14524 . . . . 5 ((𝑈 ∈ V ∧ (♯‘𝑈) = 2) → (({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6665imp 406 . . . 4 (((𝑈 ∈ V ∧ (♯‘𝑈) = 2) ∧ ({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅))) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
6759, 60, 62, 64, 49, 66syl23anc 1377 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
681, 2, 3drngidl 33426 . . . 4 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6968biimpar 477 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}) → 𝑅 ∈ DivRing)
7057, 67, 69syl2anc 583 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ DivRing)
7124, 70impbida 800 1 (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  {csn 4648  {cpr 4650  cfv 6573  cr 11183  1c1 11185   < clt 11324  2c2 12348  chash 14379  Basecbs 17258  0gc0g 17499  1rcur 20208  Ringcrg 20260  NzRingcnzr 20538  DivRingcdr 20751  LIdealclidl 21239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator