Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidlhash Structured version   Visualization version   GIF version

Theorem drngidlhash 33442
Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypothesis
Ref Expression
drngidlhash.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidlhash (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))

Proof of Theorem drngidlhash
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2735 . . . . . 6 (0g𝑅) = (0g𝑅)
3 drngidlhash.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21271 . . . . 5 (𝑅 ∈ DivRing → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
54fveq2d 6911 . . . 4 (𝑅 ∈ DivRing → (♯‘𝑈) = (♯‘{{(0g𝑅)}, (Base‘𝑅)}))
6 drngnzr 20765 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
7 nzrring 20533 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
8 eqid 2735 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
91, 8ringidcl 20280 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
107, 9syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
118, 2nzrnz 20532 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
12 nelsn 4671 . . . . . . . . 9 ((1r𝑅) ≠ (0g𝑅) → ¬ (1r𝑅) ∈ {(0g𝑅)})
1311, 12syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → ¬ (1r𝑅) ∈ {(0g𝑅)})
14 nelne1 3037 . . . . . . . 8 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ {(0g𝑅)}) → (Base‘𝑅) ≠ {(0g𝑅)})
1510, 13, 14syl2anc 584 . . . . . . 7 (𝑅 ∈ NzRing → (Base‘𝑅) ≠ {(0g𝑅)})
1615necomd 2994 . . . . . 6 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
176, 16syl 17 . . . . 5 (𝑅 ∈ DivRing → {(0g𝑅)} ≠ (Base‘𝑅))
18 snex 5442 . . . . . 6 {(0g𝑅)} ∈ V
19 fvex 6920 . . . . . 6 (Base‘𝑅) ∈ V
20 hashprg 14431 . . . . . 6 (({(0g𝑅)} ∈ V ∧ (Base‘𝑅) ∈ V) → ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2))
2118, 19, 20mp2an 692 . . . . 5 ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
2217, 21sylib 218 . . . 4 (𝑅 ∈ DivRing → (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
235, 22eqtrd 2775 . . 3 (𝑅 ∈ DivRing → (♯‘𝑈) = 2)
2423adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ DivRing) → (♯‘𝑈) = 2)
25 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ Ring)
26 simplr 769 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 2)
27 2re 12338 . . . . . . . . . . 11 2 ∈ ℝ
2826, 27eqeltrdi 2847 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ∈ ℝ)
29 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑅 ∈ Ring)
30 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
3130fveq2d 6911 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
32 fvex 6920 . . . . . . . . . . . . . . . . . 18 (0g𝑅) ∈ V
33 hashsng 14405 . . . . . . . . . . . . . . . . . 18 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 (♯‘{(0g𝑅)}) = 1
3531, 34eqtr3di 2790 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘(Base‘𝑅)) = 1)
361, 20ringidl 33429 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (LIdeal‘𝑅) = {{(0g𝑅)}})
3729, 35, 36syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (LIdeal‘𝑅) = {{(0g𝑅)}})
383, 37eqtrid 2787 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}})
3938fveq2d 6911 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = (♯‘{{(0g𝑅)}}))
40 hashsng 14405 . . . . . . . . . . . . . 14 ({(0g𝑅)} ∈ V → (♯‘{{(0g𝑅)}}) = 1)
4118, 40ax-mp 5 . . . . . . . . . . . . 13 (♯‘{{(0g𝑅)}}) = 1
4239, 41eqtrdi 2791 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
4342adantlr 715 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
44 1lt2 12435 . . . . . . . . . . 11 1 < 2
4543, 44eqbrtrdi 5187 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) < 2)
4628, 45ltned 11395 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ≠ 2)
4746neneqd 2943 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ (♯‘𝑈) = 2)
4826, 47pm2.65da 817 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → ¬ {(0g𝑅)} = (Base‘𝑅))
4948neqned 2945 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ≠ (Base‘𝑅))
501, 2, 801eq0ring 20547 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
5150eqcomd 2741 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → {(0g𝑅)} = (Base‘𝑅))
5251ex 412 . . . . . . 7 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = (Base‘𝑅)))
5352necon3d 2959 . . . . . 6 (𝑅 ∈ Ring → ({(0g𝑅)} ≠ (Base‘𝑅) → (0g𝑅) ≠ (1r𝑅)))
5425, 49, 53sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (0g𝑅) ≠ (1r𝑅))
5554necomd 2994 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (1r𝑅) ≠ (0g𝑅))
568, 2isnzr 20531 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5725, 55, 56sylanbrc 583 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ NzRing)
583fvexi 6921 . . . . 5 𝑈 ∈ V
5958a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 ∈ V)
60 simpr 484 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (♯‘𝑈) = 2)
613, 2lidl0 21258 . . . . 5 (𝑅 ∈ Ring → {(0g𝑅)} ∈ 𝑈)
6225, 61syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ∈ 𝑈)
633, 1lidl1 21261 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) ∈ 𝑈)
6425, 63syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (Base‘𝑅) ∈ 𝑈)
65 hash2prd 14511 . . . . 5 ((𝑈 ∈ V ∧ (♯‘𝑈) = 2) → (({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6665imp 406 . . . 4 (((𝑈 ∈ V ∧ (♯‘𝑈) = 2) ∧ ({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅))) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
6759, 60, 62, 64, 49, 66syl23anc 1376 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
681, 2, 3drngidl 33441 . . . 4 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6968biimpar 477 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}) → 𝑅 ∈ DivRing)
7057, 67, 69syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ DivRing)
7124, 70impbida 801 1 (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  {csn 4631  {cpr 4633  cfv 6563  cr 11152  1c1 11154   < clt 11293  2c2 12319  chash 14366  Basecbs 17245  0gc0g 17486  1rcur 20199  Ringcrg 20251  NzRingcnzr 20529  DivRingcdr 20746  LIdealclidl 21234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-nzr 20530  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator