Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidlhash Structured version   Visualization version   GIF version

Theorem drngidlhash 33406
Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypothesis
Ref Expression
drngidlhash.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidlhash (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))

Proof of Theorem drngidlhash
StepHypRef Expression
1 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . . . . 6 (0g𝑅) = (0g𝑅)
3 drngidlhash.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21182 . . . . 5 (𝑅 ∈ DivRing → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
54fveq2d 6832 . . . 4 (𝑅 ∈ DivRing → (♯‘𝑈) = (♯‘{{(0g𝑅)}, (Base‘𝑅)}))
6 drngnzr 20665 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
7 nzrring 20433 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
8 eqid 2733 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
91, 8ringidcl 20185 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
107, 9syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
118, 2nzrnz 20432 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
12 nelsn 4618 . . . . . . . . 9 ((1r𝑅) ≠ (0g𝑅) → ¬ (1r𝑅) ∈ {(0g𝑅)})
1311, 12syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → ¬ (1r𝑅) ∈ {(0g𝑅)})
14 nelne1 3026 . . . . . . . 8 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ {(0g𝑅)}) → (Base‘𝑅) ≠ {(0g𝑅)})
1510, 13, 14syl2anc 584 . . . . . . 7 (𝑅 ∈ NzRing → (Base‘𝑅) ≠ {(0g𝑅)})
1615necomd 2984 . . . . . 6 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
176, 16syl 17 . . . . 5 (𝑅 ∈ DivRing → {(0g𝑅)} ≠ (Base‘𝑅))
18 snex 5376 . . . . . 6 {(0g𝑅)} ∈ V
19 fvex 6841 . . . . . 6 (Base‘𝑅) ∈ V
20 hashprg 14304 . . . . . 6 (({(0g𝑅)} ∈ V ∧ (Base‘𝑅) ∈ V) → ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2))
2118, 19, 20mp2an 692 . . . . 5 ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
2217, 21sylib 218 . . . 4 (𝑅 ∈ DivRing → (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
235, 22eqtrd 2768 . . 3 (𝑅 ∈ DivRing → (♯‘𝑈) = 2)
2423adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ DivRing) → (♯‘𝑈) = 2)
25 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ Ring)
26 simplr 768 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 2)
27 2re 12206 . . . . . . . . . . 11 2 ∈ ℝ
2826, 27eqeltrdi 2841 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ∈ ℝ)
29 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑅 ∈ Ring)
30 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
3130fveq2d 6832 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
32 fvex 6841 . . . . . . . . . . . . . . . . . 18 (0g𝑅) ∈ V
33 hashsng 14278 . . . . . . . . . . . . . . . . . 18 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 (♯‘{(0g𝑅)}) = 1
3531, 34eqtr3di 2783 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘(Base‘𝑅)) = 1)
361, 20ringidl 33393 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (LIdeal‘𝑅) = {{(0g𝑅)}})
3729, 35, 36syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (LIdeal‘𝑅) = {{(0g𝑅)}})
383, 37eqtrid 2780 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}})
3938fveq2d 6832 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = (♯‘{{(0g𝑅)}}))
40 hashsng 14278 . . . . . . . . . . . . . 14 ({(0g𝑅)} ∈ V → (♯‘{{(0g𝑅)}}) = 1)
4118, 40ax-mp 5 . . . . . . . . . . . . 13 (♯‘{{(0g𝑅)}}) = 1
4239, 41eqtrdi 2784 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
4342adantlr 715 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
44 1lt2 12298 . . . . . . . . . . 11 1 < 2
4543, 44eqbrtrdi 5132 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) < 2)
4628, 45ltned 11256 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ≠ 2)
4746neneqd 2934 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ (♯‘𝑈) = 2)
4826, 47pm2.65da 816 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → ¬ {(0g𝑅)} = (Base‘𝑅))
4948neqned 2936 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ≠ (Base‘𝑅))
501, 2, 801eq0ring 20447 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
5150eqcomd 2739 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → {(0g𝑅)} = (Base‘𝑅))
5251ex 412 . . . . . . 7 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = (Base‘𝑅)))
5352necon3d 2950 . . . . . 6 (𝑅 ∈ Ring → ({(0g𝑅)} ≠ (Base‘𝑅) → (0g𝑅) ≠ (1r𝑅)))
5425, 49, 53sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (0g𝑅) ≠ (1r𝑅))
5554necomd 2984 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (1r𝑅) ≠ (0g𝑅))
568, 2isnzr 20431 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5725, 55, 56sylanbrc 583 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ NzRing)
583fvexi 6842 . . . . 5 𝑈 ∈ V
5958a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 ∈ V)
60 simpr 484 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (♯‘𝑈) = 2)
613, 2lidl0 21169 . . . . 5 (𝑅 ∈ Ring → {(0g𝑅)} ∈ 𝑈)
6225, 61syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ∈ 𝑈)
633, 1lidl1 21172 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) ∈ 𝑈)
6425, 63syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (Base‘𝑅) ∈ 𝑈)
65 hash2prd 14384 . . . . 5 ((𝑈 ∈ V ∧ (♯‘𝑈) = 2) → (({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6665imp 406 . . . 4 (((𝑈 ∈ V ∧ (♯‘𝑈) = 2) ∧ ({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅))) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
6759, 60, 62, 64, 49, 66syl23anc 1379 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
681, 2, 3drngidl 33405 . . . 4 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6968biimpar 477 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}) → 𝑅 ∈ DivRing)
7057, 67, 69syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ DivRing)
7124, 70impbida 800 1 (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  {csn 4575  {cpr 4577  cfv 6486  cr 11012  1c1 11014   < clt 11153  2c2 12187  chash 14239  Basecbs 17122  0gc0g 17345  1rcur 20101  Ringcrg 20153  NzRingcnzr 20429  DivRingcdr 20646  LIdealclidl 21145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-hash 14240  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-nzr 20430  df-subrg 20487  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-rsp 21148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator