Step | Hyp | Ref
| Expression |
1 | | eqid 2724 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
2 | | eqid 2724 |
. . . . . 6
β’
(0gβπ
) = (0gβπ
) |
3 | | drngidlhash.u |
. . . . . 6
β’ π = (LIdealβπ
) |
4 | 1, 2, 3 | drngnidl 21091 |
. . . . 5
β’ (π
β DivRing β π = {{(0gβπ
)}, (Baseβπ
)}) |
5 | 4 | fveq2d 6885 |
. . . 4
β’ (π
β DivRing β
(β―βπ) =
(β―β{{(0gβπ
)}, (Baseβπ
)})) |
6 | | drngnzr 20597 |
. . . . . 6
β’ (π
β DivRing β π
β NzRing) |
7 | | nzrring 20408 |
. . . . . . . . 9
β’ (π
β NzRing β π
β Ring) |
8 | | eqid 2724 |
. . . . . . . . . 10
β’
(1rβπ
) = (1rβπ
) |
9 | 1, 8 | ringidcl 20155 |
. . . . . . . . 9
β’ (π
β Ring β
(1rβπ
)
β (Baseβπ
)) |
10 | 7, 9 | syl 17 |
. . . . . . . 8
β’ (π
β NzRing β
(1rβπ
)
β (Baseβπ
)) |
11 | 8, 2 | nzrnz 20407 |
. . . . . . . . 9
β’ (π
β NzRing β
(1rβπ
)
β (0gβπ
)) |
12 | | nelsn 4660 |
. . . . . . . . 9
β’
((1rβπ
) β (0gβπ
) β Β¬
(1rβπ
)
β {(0gβπ
)}) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
β’ (π
β NzRing β Β¬
(1rβπ
)
β {(0gβπ
)}) |
14 | | nelne1 3031 |
. . . . . . . 8
β’
(((1rβπ
) β (Baseβπ
) β§ Β¬ (1rβπ
) β
{(0gβπ
)})
β (Baseβπ
) β
{(0gβπ
)}) |
15 | 10, 13, 14 | syl2anc 583 |
. . . . . . 7
β’ (π
β NzRing β
(Baseβπ
) β
{(0gβπ
)}) |
16 | 15 | necomd 2988 |
. . . . . 6
β’ (π
β NzRing β
{(0gβπ
)}
β (Baseβπ
)) |
17 | 6, 16 | syl 17 |
. . . . 5
β’ (π
β DivRing β
{(0gβπ
)}
β (Baseβπ
)) |
18 | | snex 5421 |
. . . . . 6
β’
{(0gβπ
)} β V |
19 | | fvex 6894 |
. . . . . 6
β’
(Baseβπ
)
β V |
20 | | hashprg 14352 |
. . . . . 6
β’
(({(0gβπ
)} β V β§ (Baseβπ
) β V) β
({(0gβπ
)}
β (Baseβπ
) β
(β―β{{(0gβπ
)}, (Baseβπ
)}) = 2)) |
21 | 18, 19, 20 | mp2an 689 |
. . . . 5
β’
({(0gβπ
)} β (Baseβπ
) β
(β―β{{(0gβπ
)}, (Baseβπ
)}) = 2) |
22 | 17, 21 | sylib 217 |
. . . 4
β’ (π
β DivRing β
(β―β{{(0gβπ
)}, (Baseβπ
)}) = 2) |
23 | 5, 22 | eqtrd 2764 |
. . 3
β’ (π
β DivRing β
(β―βπ) =
2) |
24 | 23 | adantl 481 |
. 2
β’ ((π
β Ring β§ π
β DivRing) β
(β―βπ) =
2) |
25 | | simpl 482 |
. . . 4
β’ ((π
β Ring β§
(β―βπ) = 2)
β π
β
Ring) |
26 | | simplr 766 |
. . . . . . . 8
β’ (((π
β Ring β§
(β―βπ) = 2)
β§ {(0gβπ
)} = (Baseβπ
)) β (β―βπ) = 2) |
27 | | 2re 12283 |
. . . . . . . . . . 11
β’ 2 β
β |
28 | 26, 27 | eqeltrdi 2833 |
. . . . . . . . . 10
β’ (((π
β Ring β§
(β―βπ) = 2)
β§ {(0gβπ
)} = (Baseβπ
)) β (β―βπ) β β) |
29 | | simpl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
π
β
Ring) |
30 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
{(0gβπ
)} =
(Baseβπ
)) |
31 | 30 | fveq2d 6885 |
. . . . . . . . . . . . . . . . 17
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
(β―β{(0gβπ
)}) = (β―β(Baseβπ
))) |
32 | | fvex 6894 |
. . . . . . . . . . . . . . . . . 18
β’
(0gβπ
) β V |
33 | | hashsng 14326 |
. . . . . . . . . . . . . . . . . 18
β’
((0gβπ
) β V β
(β―β{(0gβπ
)}) = 1) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
β’
(β―β{(0gβπ
)}) = 1 |
35 | 31, 34 | eqtr3di 2779 |
. . . . . . . . . . . . . . . 16
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
(β―β(Baseβπ
)) = 1) |
36 | 1, 2 | 0ringidl 33008 |
. . . . . . . . . . . . . . . 16
β’ ((π
β Ring β§
(β―β(Baseβπ
)) = 1) β (LIdealβπ
) = {{(0gβπ
)}}) |
37 | 29, 35, 36 | syl2anc 583 |
. . . . . . . . . . . . . . 15
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
(LIdealβπ
) =
{{(0gβπ
)}}) |
38 | 3, 37 | eqtrid 2776 |
. . . . . . . . . . . . . 14
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
π =
{{(0gβπ
)}}) |
39 | 38 | fveq2d 6885 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
(β―βπ) =
(β―β{{(0gβπ
)}})) |
40 | | hashsng 14326 |
. . . . . . . . . . . . . 14
β’
({(0gβπ
)} β V β
(β―β{{(0gβπ
)}}) = 1) |
41 | 18, 40 | ax-mp 5 |
. . . . . . . . . . . . 13
β’
(β―β{{(0gβπ
)}}) = 1 |
42 | 39, 41 | eqtrdi 2780 |
. . . . . . . . . . . 12
β’ ((π
β Ring β§
{(0gβπ
)} =
(Baseβπ
)) β
(β―βπ) =
1) |
43 | 42 | adantlr 712 |
. . . . . . . . . . 11
β’ (((π
β Ring β§
(β―βπ) = 2)
β§ {(0gβπ
)} = (Baseβπ
)) β (β―βπ) = 1) |
44 | | 1lt2 12380 |
. . . . . . . . . . 11
β’ 1 <
2 |
45 | 43, 44 | eqbrtrdi 5177 |
. . . . . . . . . 10
β’ (((π
β Ring β§
(β―βπ) = 2)
β§ {(0gβπ
)} = (Baseβπ
)) β (β―βπ) < 2) |
46 | 28, 45 | ltned 11347 |
. . . . . . . . 9
β’ (((π
β Ring β§
(β―βπ) = 2)
β§ {(0gβπ
)} = (Baseβπ
)) β (β―βπ) β 2) |
47 | 46 | neneqd 2937 |
. . . . . . . 8
β’ (((π
β Ring β§
(β―βπ) = 2)
β§ {(0gβπ
)} = (Baseβπ
)) β Β¬ (β―βπ) = 2) |
48 | 26, 47 | pm2.65da 814 |
. . . . . . 7
β’ ((π
β Ring β§
(β―βπ) = 2)
β Β¬ {(0gβπ
)} = (Baseβπ
)) |
49 | 48 | neqned 2939 |
. . . . . 6
β’ ((π
β Ring β§
(β―βπ) = 2)
β {(0gβπ
)} β (Baseβπ
)) |
50 | 1, 2, 8 | 01eq0ring 20420 |
. . . . . . . . 9
β’ ((π
β Ring β§
(0gβπ
) =
(1rβπ
))
β (Baseβπ
) =
{(0gβπ
)}) |
51 | 50 | eqcomd 2730 |
. . . . . . . 8
β’ ((π
β Ring β§
(0gβπ
) =
(1rβπ
))
β {(0gβπ
)} = (Baseβπ
)) |
52 | 51 | ex 412 |
. . . . . . 7
β’ (π
β Ring β
((0gβπ
) =
(1rβπ
)
β {(0gβπ
)} = (Baseβπ
))) |
53 | 52 | necon3d 2953 |
. . . . . 6
β’ (π
β Ring β
({(0gβπ
)}
β (Baseβπ
) β
(0gβπ
)
β (1rβπ
))) |
54 | 25, 49, 53 | sylc 65 |
. . . . 5
β’ ((π
β Ring β§
(β―βπ) = 2)
β (0gβπ
) β (1rβπ
)) |
55 | 54 | necomd 2988 |
. . . 4
β’ ((π
β Ring β§
(β―βπ) = 2)
β (1rβπ
) β (0gβπ
)) |
56 | 8, 2 | isnzr 20406 |
. . . 4
β’ (π
β NzRing β (π
β Ring β§
(1rβπ
)
β (0gβπ
))) |
57 | 25, 55, 56 | sylanbrc 582 |
. . 3
β’ ((π
β Ring β§
(β―βπ) = 2)
β π
β
NzRing) |
58 | 3 | fvexi 6895 |
. . . . 5
β’ π β V |
59 | 58 | a1i 11 |
. . . 4
β’ ((π
β Ring β§
(β―βπ) = 2)
β π β
V) |
60 | | simpr 484 |
. . . 4
β’ ((π
β Ring β§
(β―βπ) = 2)
β (β―βπ) =
2) |
61 | 3, 2 | lidl0 21079 |
. . . . 5
β’ (π
β Ring β
{(0gβπ
)}
β π) |
62 | 25, 61 | syl 17 |
. . . 4
β’ ((π
β Ring β§
(β―βπ) = 2)
β {(0gβπ
)} β π) |
63 | 3, 1 | lidl1 21082 |
. . . . 5
β’ (π
β Ring β
(Baseβπ
) β π) |
64 | 25, 63 | syl 17 |
. . . 4
β’ ((π
β Ring β§
(β―βπ) = 2)
β (Baseβπ
)
β π) |
65 | | hash2prd 14433 |
. . . . 5
β’ ((π β V β§
(β―βπ) = 2)
β (({(0gβπ
)} β π β§ (Baseβπ
) β π β§ {(0gβπ
)} β (Baseβπ
)) β π = {{(0gβπ
)}, (Baseβπ
)})) |
66 | 65 | imp 406 |
. . . 4
β’ (((π β V β§
(β―βπ) = 2)
β§ ({(0gβπ
)} β π β§ (Baseβπ
) β π β§ {(0gβπ
)} β (Baseβπ
))) β π = {{(0gβπ
)}, (Baseβπ
)}) |
67 | 59, 60, 62, 64, 49, 66 | syl23anc 1374 |
. . 3
β’ ((π
β Ring β§
(β―βπ) = 2)
β π =
{{(0gβπ
)},
(Baseβπ
)}) |
68 | 1, 2, 3 | drngidl 33020 |
. . . 4
β’ (π
β NzRing β (π
β DivRing β π = {{(0gβπ
)}, (Baseβπ
)})) |
69 | 68 | biimpar 477 |
. . 3
β’ ((π
β NzRing β§ π = {{(0gβπ
)}, (Baseβπ
)}) β π
β DivRing) |
70 | 57, 67, 69 | syl2anc 583 |
. 2
β’ ((π
β Ring β§
(β―βπ) = 2)
β π
β
DivRing) |
71 | 24, 70 | impbida 798 |
1
β’ (π
β Ring β (π
β DivRing β
(β―βπ) =
2)) |