Proof of Theorem drngidlhash
Step | Hyp | Ref
| Expression |
1 | | eqid 2731 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2731 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
3 | | drngidlhash.u |
. . . . . 6
⊢ 𝑈 = (LIdeal‘𝑅) |
4 | 1, 2, 3 | drngnidl 21097 |
. . . . 5
⊢ (𝑅 ∈ DivRing → 𝑈 = {{(0g‘𝑅)}, (Base‘𝑅)}) |
5 | 4 | fveq2d 6895 |
. . . 4
⊢ (𝑅 ∈ DivRing →
(♯‘𝑈) =
(♯‘{{(0g‘𝑅)}, (Base‘𝑅)})) |
6 | | drngnzr 20603 |
. . . . . 6
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) |
7 | | nzrring 20414 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
8 | | eqid 2731 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
9 | 1, 8 | ringidcl 20161 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
10 | 7, 9 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ (Base‘𝑅)) |
11 | 8, 2 | nzrnz 20413 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
12 | | nelsn 4668 |
. . . . . . . . 9
⊢
((1r‘𝑅) ≠ (0g‘𝑅) → ¬
(1r‘𝑅)
∈ {(0g‘𝑅)}) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing → ¬
(1r‘𝑅)
∈ {(0g‘𝑅)}) |
14 | | nelne1 3038 |
. . . . . . . 8
⊢
(((1r‘𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r‘𝑅) ∈
{(0g‘𝑅)})
→ (Base‘𝑅) ≠
{(0g‘𝑅)}) |
15 | 10, 13, 14 | syl2anc 583 |
. . . . . . 7
⊢ (𝑅 ∈ NzRing →
(Base‘𝑅) ≠
{(0g‘𝑅)}) |
16 | 15 | necomd 2995 |
. . . . . 6
⊢ (𝑅 ∈ NzRing →
{(0g‘𝑅)}
≠ (Base‘𝑅)) |
17 | 6, 16 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ DivRing →
{(0g‘𝑅)}
≠ (Base‘𝑅)) |
18 | | snex 5431 |
. . . . . 6
⊢
{(0g‘𝑅)} ∈ V |
19 | | fvex 6904 |
. . . . . 6
⊢
(Base‘𝑅)
∈ V |
20 | | hashprg 14362 |
. . . . . 6
⊢
(({(0g‘𝑅)} ∈ V ∧ (Base‘𝑅) ∈ V) →
({(0g‘𝑅)}
≠ (Base‘𝑅) ↔
(♯‘{{(0g‘𝑅)}, (Base‘𝑅)}) = 2)) |
21 | 18, 19, 20 | mp2an 689 |
. . . . 5
⊢
({(0g‘𝑅)} ≠ (Base‘𝑅) ↔
(♯‘{{(0g‘𝑅)}, (Base‘𝑅)}) = 2) |
22 | 17, 21 | sylib 217 |
. . . 4
⊢ (𝑅 ∈ DivRing →
(♯‘{{(0g‘𝑅)}, (Base‘𝑅)}) = 2) |
23 | 5, 22 | eqtrd 2771 |
. . 3
⊢ (𝑅 ∈ DivRing →
(♯‘𝑈) =
2) |
24 | 23 | adantl 481 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑅 ∈ DivRing) →
(♯‘𝑈) =
2) |
25 | | simpl 482 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ 𝑅 ∈
Ring) |
26 | | simplr 766 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 2) |
27 | | 2re 12293 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
28 | 26, 27 | eqeltrdi 2840 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ∈ ℝ) |
29 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
𝑅 ∈
Ring) |
30 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
{(0g‘𝑅)} =
(Base‘𝑅)) |
31 | 30 | fveq2d 6895 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
(♯‘{(0g‘𝑅)}) = (♯‘(Base‘𝑅))) |
32 | | fvex 6904 |
. . . . . . . . . . . . . . . . . 18
⊢
(0g‘𝑅) ∈ V |
33 | | hashsng 14336 |
. . . . . . . . . . . . . . . . . 18
⊢
((0g‘𝑅) ∈ V →
(♯‘{(0g‘𝑅)}) = 1) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(♯‘{(0g‘𝑅)}) = 1 |
35 | 31, 34 | eqtr3di 2786 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
(♯‘(Base‘𝑅)) = 1) |
36 | 1, 2 | 0ringidl 32981 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧
(♯‘(Base‘𝑅)) = 1) → (LIdeal‘𝑅) = {{(0g‘𝑅)}}) |
37 | 29, 35, 36 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
(LIdeal‘𝑅) =
{{(0g‘𝑅)}}) |
38 | 3, 37 | eqtrid 2783 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
𝑈 =
{{(0g‘𝑅)}}) |
39 | 38 | fveq2d 6895 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
(♯‘𝑈) =
(♯‘{{(0g‘𝑅)}})) |
40 | | hashsng 14336 |
. . . . . . . . . . . . . 14
⊢
({(0g‘𝑅)} ∈ V →
(♯‘{{(0g‘𝑅)}}) = 1) |
41 | 18, 40 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(♯‘{{(0g‘𝑅)}}) = 1 |
42 | 39, 41 | eqtrdi 2787 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧
{(0g‘𝑅)} =
(Base‘𝑅)) →
(♯‘𝑈) =
1) |
43 | 42 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1) |
44 | | 1lt2 12390 |
. . . . . . . . . . 11
⊢ 1 <
2 |
45 | 43, 44 | eqbrtrdi 5187 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘𝑈) < 2) |
46 | 28, 45 | ltned 11357 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ≠ 2) |
47 | 46 | neneqd 2944 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
∧ {(0g‘𝑅)} = (Base‘𝑅)) → ¬ (♯‘𝑈) = 2) |
48 | 26, 47 | pm2.65da 814 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ ¬ {(0g‘𝑅)} = (Base‘𝑅)) |
49 | 48 | neqned 2946 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ {(0g‘𝑅)} ≠ (Base‘𝑅)) |
50 | 1, 2, 8 | 01eq0ring 20426 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝑅) =
(1r‘𝑅))
→ (Base‘𝑅) =
{(0g‘𝑅)}) |
51 | 50 | eqcomd 2737 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧
(0g‘𝑅) =
(1r‘𝑅))
→ {(0g‘𝑅)} = (Base‘𝑅)) |
52 | 51 | ex 412 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
((0g‘𝑅) =
(1r‘𝑅)
→ {(0g‘𝑅)} = (Base‘𝑅))) |
53 | 52 | necon3d 2960 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
({(0g‘𝑅)}
≠ (Base‘𝑅) →
(0g‘𝑅)
≠ (1r‘𝑅))) |
54 | 25, 49, 53 | sylc 65 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ (0g‘𝑅) ≠ (1r‘𝑅)) |
55 | 54 | necomd 2995 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ (1r‘𝑅) ≠ (0g‘𝑅)) |
56 | 8, 2 | isnzr 20412 |
. . . 4
⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧
(1r‘𝑅)
≠ (0g‘𝑅))) |
57 | 25, 55, 56 | sylanbrc 582 |
. . 3
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ 𝑅 ∈
NzRing) |
58 | 3 | fvexi 6905 |
. . . . 5
⊢ 𝑈 ∈ V |
59 | 58 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ 𝑈 ∈
V) |
60 | | simpr 484 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ (♯‘𝑈) =
2) |
61 | 3, 2 | lidl0 21085 |
. . . . 5
⊢ (𝑅 ∈ Ring →
{(0g‘𝑅)}
∈ 𝑈) |
62 | 25, 61 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ {(0g‘𝑅)} ∈ 𝑈) |
63 | 3, 1 | lidl1 21088 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) ∈ 𝑈) |
64 | 25, 63 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ (Base‘𝑅)
∈ 𝑈) |
65 | | hash2prd 14443 |
. . . . 5
⊢ ((𝑈 ∈ V ∧
(♯‘𝑈) = 2)
→ (({(0g‘𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g‘𝑅)} ≠ (Base‘𝑅)) → 𝑈 = {{(0g‘𝑅)}, (Base‘𝑅)})) |
66 | 65 | imp 406 |
. . . 4
⊢ (((𝑈 ∈ V ∧
(♯‘𝑈) = 2)
∧ ({(0g‘𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g‘𝑅)} ≠ (Base‘𝑅))) → 𝑈 = {{(0g‘𝑅)}, (Base‘𝑅)}) |
67 | 59, 60, 62, 64, 49, 66 | syl23anc 1376 |
. . 3
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ 𝑈 =
{{(0g‘𝑅)},
(Base‘𝑅)}) |
68 | 1, 2, 3 | drngidl 32993 |
. . . 4
⊢ (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{(0g‘𝑅)}, (Base‘𝑅)})) |
69 | 68 | biimpar 477 |
. . 3
⊢ ((𝑅 ∈ NzRing ∧ 𝑈 = {{(0g‘𝑅)}, (Base‘𝑅)}) → 𝑅 ∈ DivRing) |
70 | 57, 67, 69 | syl2anc 583 |
. 2
⊢ ((𝑅 ∈ Ring ∧
(♯‘𝑈) = 2)
→ 𝑅 ∈
DivRing) |
71 | 24, 70 | impbida 798 |
1
⊢ (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔
(♯‘𝑈) =
2)) |