MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnzr Structured version   Visualization version   GIF version

Theorem drngnzr 20719
Description: A division ring is a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
drngnzr (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)

Proof of Theorem drngnzr
StepHypRef Expression
1 drngring 20707 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2726 . . 3 (0g𝑅) = (0g𝑅)
3 eqid 2726 . . 3 (1r𝑅) = (1r𝑅)
42, 3drngunz 20718 . 2 (𝑅 ∈ DivRing → (1r𝑅) ≠ (0g𝑅))
53, 2isnzr 20489 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
61, 4, 5sylanbrc 581 1 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wne 2930  cfv 6543  0gc0g 17446  1rcur 20157  Ringcrg 20209  NzRingcnzr 20487  DivRingcdr 20700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7993  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-3 12319  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-plusg 17271  df-mulr 17272  df-0g 17448  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-grp 18923  df-minusg 18924  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20129  df-ur 20158  df-ring 20211  df-oppr 20309  df-dvdsr 20332  df-unit 20333  df-nzr 20488  df-drng 20702
This theorem is referenced by:  drngdomn  20720  rng1nfld  20751  islinds4  21826  drngidlhash  33312  drng0mxidl  33354  drngmxidl  33355  qsdrng  33375  ply1unit  33450  m1pmeq  33458  frlmdim  33509  ply1degltdimlem  33520  ply1degltdim  33521  fedgmul  33529  minplyirred  33583  algextdeglem4  33590  rtelextdg2lem  33596  2sqr3minply  33617  qqhnm  33815  lindsdom  37325  lindsenlbs  37326  matunitlindflem2  37328  aks6d1c2lem4  41836  aks6d1c5lem3  41846  aks6d1c6lem1  41879  0prjspnlem  42310  isldepslvec2  47901  lmod1zrnlvec  47910  aacllem  48582
  Copyright terms: Public domain W3C validator