Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnzr2hash | Structured version Visualization version GIF version |
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20534. (Contributed by AV, 14-Apr-2019.) |
Ref | Expression |
---|---|
isnzr2hash.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnzr2hash | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20530 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | isnzr2hash.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 4, 1 | ringidcl 19807 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
6 | 4, 2 | ring0cl 19808 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
7 | 1xr 11034 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 ∈ ℝ*) |
9 | prex 5355 | . . . . . . . 8 ⊢ {(1r‘𝑅), (0g‘𝑅)} ∈ V | |
10 | hashxrcl 14072 | . . . . . . . 8 ⊢ ({(1r‘𝑅), (0g‘𝑅)} ∈ V → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) | |
11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) |
12 | 4 | fvexi 6788 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
13 | hashxrcl 14072 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘𝐵) ∈ ℝ*) |
15 | 1lt2 12144 | . . . . . . . 8 ⊢ 1 < 2 | |
16 | hashprg 14110 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2)) | |
17 | 16 | biimpa 477 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2) |
18 | 15, 17 | breqtrrid 5112 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘{(1r‘𝑅), (0g‘𝑅)})) |
19 | simpl 483 | . . . . . . . . 9 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵)) | |
20 | fvex 6787 | . . . . . . . . . 10 ⊢ (1r‘𝑅) ∈ V | |
21 | fvex 6787 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
22 | 20, 21 | prss 4753 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ↔ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
23 | 19, 22 | sylib 217 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
24 | hashss 14124 | . . . . . . . 8 ⊢ ((𝐵 ∈ V ∧ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) | |
25 | 12, 23, 24 | sylancr 587 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) |
26 | 8, 11, 14, 18, 25 | xrltletrd 12895 | . . . . . 6 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘𝐵)) |
27 | 26 | ex 413 | . . . . 5 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
28 | 5, 6, 27 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
29 | 28 | imdistani 569 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
30 | simpl 483 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring) | |
31 | 4, 1, 2 | ring1ne0 19830 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r‘𝑅) ≠ (0g‘𝑅)) |
32 | 30, 31 | jca 512 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
33 | 29, 32 | impbii 208 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
34 | 3, 33 | bitri 274 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 {cpr 4563 class class class wbr 5074 ‘cfv 6433 1c1 10872 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 2c2 12028 ♯chash 14044 Basecbs 16912 0gc0g 17150 1rcur 19737 Ringcrg 19783 NzRingcnzr 20528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ur 19738 df-ring 19785 df-nzr 20529 |
This theorem is referenced by: 0ringnnzr 20540 prmidl0 31626 qsidomlem1 31628 krull 31643 el0ldepsnzr 45808 |
Copyright terms: Public domain | W3C validator |