Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnzr2hash | Structured version Visualization version GIF version |
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20530. (Contributed by AV, 14-Apr-2019.) |
Ref | Expression |
---|---|
isnzr2hash.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnzr2hash | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20526 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | isnzr2hash.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 4, 1 | ringidcl 19803 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
6 | 4, 2 | ring0cl 19804 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
7 | 1xr 11033 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 ∈ ℝ*) |
9 | prex 5359 | . . . . . . . 8 ⊢ {(1r‘𝑅), (0g‘𝑅)} ∈ V | |
10 | hashxrcl 14068 | . . . . . . . 8 ⊢ ({(1r‘𝑅), (0g‘𝑅)} ∈ V → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) | |
11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) |
12 | 4 | fvexi 6783 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
13 | hashxrcl 14068 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘𝐵) ∈ ℝ*) |
15 | 1lt2 12142 | . . . . . . . 8 ⊢ 1 < 2 | |
16 | hashprg 14106 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2)) | |
17 | 16 | biimpa 477 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2) |
18 | 15, 17 | breqtrrid 5117 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘{(1r‘𝑅), (0g‘𝑅)})) |
19 | simpl 483 | . . . . . . . . 9 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵)) | |
20 | fvex 6782 | . . . . . . . . . 10 ⊢ (1r‘𝑅) ∈ V | |
21 | fvex 6782 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
22 | 20, 21 | prss 4759 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ↔ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
23 | 19, 22 | sylib 217 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
24 | hashss 14120 | . . . . . . . 8 ⊢ ((𝐵 ∈ V ∧ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) | |
25 | 12, 23, 24 | sylancr 587 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) |
26 | 8, 11, 14, 18, 25 | xrltletrd 12892 | . . . . . 6 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘𝐵)) |
27 | 26 | ex 413 | . . . . 5 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
28 | 5, 6, 27 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
29 | 28 | imdistani 569 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
30 | simpl 483 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring) | |
31 | 4, 1, 2 | ring1ne0 19826 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r‘𝑅) ≠ (0g‘𝑅)) |
32 | 30, 31 | jca 512 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
33 | 29, 32 | impbii 208 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
34 | 3, 33 | bitri 274 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 Vcvv 3431 ⊆ wss 3892 {cpr 4569 class class class wbr 5079 ‘cfv 6431 1c1 10871 ℝ*cxr 11007 < clt 11008 ≤ cle 11009 2c2 12026 ♯chash 14040 Basecbs 16908 0gc0g 17146 1rcur 19733 Ringcrg 19779 NzRingcnzr 20524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-oadd 8290 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-dju 9658 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-n0 12232 df-xnn0 12304 df-z 12318 df-uz 12580 df-fz 13237 df-hash 14041 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-plusg 16971 df-0g 17148 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-grp 18576 df-minusg 18577 df-mgp 19717 df-ur 19734 df-ring 19781 df-nzr 20525 |
This theorem is referenced by: 0ringnnzr 20536 prmidl0 31620 qsidomlem1 31622 krull 31637 el0ldepsnzr 45775 |
Copyright terms: Public domain | W3C validator |