MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr2hash Structured version   Visualization version   GIF version

Theorem isnzr2hash 20531
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20530. (Contributed by AV, 14-Apr-2019.)
Hypothesis
Ref Expression
isnzr2hash.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2hash (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))

Proof of Theorem isnzr2hash
StepHypRef Expression
1 eqid 2740 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2740 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 20526 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2hash.b . . . . . 6 𝐵 = (Base‘𝑅)
54, 1ringidcl 19803 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
64, 2ring0cl 19804 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
7 1xr 11033 . . . . . . . 8 1 ∈ ℝ*
87a1i 11 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 ∈ ℝ*)
9 prex 5359 . . . . . . . 8 {(1r𝑅), (0g𝑅)} ∈ V
10 hashxrcl 14068 . . . . . . . 8 ({(1r𝑅), (0g𝑅)} ∈ V → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
119, 10mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
124fvexi 6783 . . . . . . . 8 𝐵 ∈ V
13 hashxrcl 14068 . . . . . . . 8 (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*)
1412, 13mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘𝐵) ∈ ℝ*)
15 1lt2 12142 . . . . . . . 8 1 < 2
16 hashprg 14106 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) ↔ (♯‘{(1r𝑅), (0g𝑅)}) = 2))
1716biimpa 477 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) = 2)
1815, 17breqtrrid 5117 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘{(1r𝑅), (0g𝑅)}))
19 simpl 483 . . . . . . . . 9 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵))
20 fvex 6782 . . . . . . . . . 10 (1r𝑅) ∈ V
21 fvex 6782 . . . . . . . . . 10 (0g𝑅) ∈ V
2220, 21prss 4759 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ↔ {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
2319, 22sylib 217 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
24 hashss 14120 . . . . . . . 8 ((𝐵 ∈ V ∧ {(1r𝑅), (0g𝑅)} ⊆ 𝐵) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
2512, 23, 24sylancr 587 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
268, 11, 14, 18, 25xrltletrd 12892 . . . . . 6 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘𝐵))
2726ex 413 . . . . 5 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
285, 6, 27syl2anc 584 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
2928imdistani 569 . . 3 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
30 simpl 483 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring)
314, 1, 2ring1ne0 19826 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r𝑅) ≠ (0g𝑅))
3230, 31jca 512 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
3329, 32impbii 208 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
343, 33bitri 274 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  Vcvv 3431  wss 3892  {cpr 4569   class class class wbr 5079  cfv 6431  1c1 10871  *cxr 11007   < clt 11008  cle 11009  2c2 12026  chash 14040  Basecbs 16908  0gc0g 17146  1rcur 19733  Ringcrg 19779  NzRingcnzr 20524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-oadd 8290  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-dju 9658  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-n0 12232  df-xnn0 12304  df-z 12318  df-uz 12580  df-fz 13237  df-hash 14041  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-plusg 16971  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-grp 18576  df-minusg 18577  df-mgp 19717  df-ur 19734  df-ring 19781  df-nzr 20525
This theorem is referenced by:  0ringnnzr  20536  prmidl0  31620  qsidomlem1  31622  krull  31637  el0ldepsnzr  45775
  Copyright terms: Public domain W3C validator