MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr2hash Structured version   Visualization version   GIF version

Theorem isnzr2hash 20484
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20483. (Contributed by AV, 14-Apr-2019.)
Hypothesis
Ref Expression
isnzr2hash.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2hash (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))

Proof of Theorem isnzr2hash
StepHypRef Expression
1 eqid 2736 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 20479 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2hash.b . . . . . 6 𝐵 = (Base‘𝑅)
54, 1ringidcl 20230 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
64, 2ring0cl 20232 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
7 1xr 11299 . . . . . . . 8 1 ∈ ℝ*
87a1i 11 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 ∈ ℝ*)
9 prex 5412 . . . . . . . 8 {(1r𝑅), (0g𝑅)} ∈ V
10 hashxrcl 14380 . . . . . . . 8 ({(1r𝑅), (0g𝑅)} ∈ V → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
119, 10mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
124fvexi 6895 . . . . . . . 8 𝐵 ∈ V
13 hashxrcl 14380 . . . . . . . 8 (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*)
1412, 13mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘𝐵) ∈ ℝ*)
15 1lt2 12416 . . . . . . . 8 1 < 2
16 hashprg 14418 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) ↔ (♯‘{(1r𝑅), (0g𝑅)}) = 2))
1716biimpa 476 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) = 2)
1815, 17breqtrrid 5162 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘{(1r𝑅), (0g𝑅)}))
19 simpl 482 . . . . . . . . 9 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵))
20 fvex 6894 . . . . . . . . . 10 (1r𝑅) ∈ V
21 fvex 6894 . . . . . . . . . 10 (0g𝑅) ∈ V
2220, 21prss 4801 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ↔ {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
2319, 22sylib 218 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
24 hashss 14432 . . . . . . . 8 ((𝐵 ∈ V ∧ {(1r𝑅), (0g𝑅)} ⊆ 𝐵) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
2512, 23, 24sylancr 587 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
268, 11, 14, 18, 25xrltletrd 13182 . . . . . 6 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘𝐵))
2726ex 412 . . . . 5 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
285, 6, 27syl2anc 584 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
2928imdistani 568 . . 3 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
30 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring)
314, 1, 2ring1ne0 20264 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r𝑅) ≠ (0g𝑅))
3230, 31jca 511 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
3329, 32impbii 209 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
343, 33bitri 275 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  wss 3931  {cpr 4608   class class class wbr 5124  cfv 6536  1c1 11135  *cxr 11273   < clt 11274  cle 11275  2c2 12300  chash 14353  Basecbs 17233  0gc0g 17458  1rcur 20146  Ringcrg 20198  NzRingcnzr 20477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-nzr 20478
This theorem is referenced by:  0ringnnzr  20490  prmidl0  33470  qsidomlem1  33472  krull  33499  el0ldepsnzr  48410
  Copyright terms: Public domain W3C validator