| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnzr2hash | Structured version Visualization version GIF version | ||
| Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20403. (Contributed by AV, 14-Apr-2019.) |
| Ref | Expression |
|---|---|
| isnzr2hash.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| isnzr2hash | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20399 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 4 | isnzr2hash.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 4, 1 | ringidcl 20150 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 6 | 4, 2 | ring0cl 20152 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
| 7 | 1xr 11209 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 ∈ ℝ*) |
| 9 | prex 5387 | . . . . . . . 8 ⊢ {(1r‘𝑅), (0g‘𝑅)} ∈ V | |
| 10 | hashxrcl 14298 | . . . . . . . 8 ⊢ ({(1r‘𝑅), (0g‘𝑅)} ∈ V → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) | |
| 11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) |
| 12 | 4 | fvexi 6854 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
| 13 | hashxrcl 14298 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
| 14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘𝐵) ∈ ℝ*) |
| 15 | 1lt2 12328 | . . . . . . . 8 ⊢ 1 < 2 | |
| 16 | hashprg 14336 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2)) | |
| 17 | 16 | biimpa 476 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2) |
| 18 | 15, 17 | breqtrrid 5140 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘{(1r‘𝑅), (0g‘𝑅)})) |
| 19 | simpl 482 | . . . . . . . . 9 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵)) | |
| 20 | fvex 6853 | . . . . . . . . . 10 ⊢ (1r‘𝑅) ∈ V | |
| 21 | fvex 6853 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
| 22 | 20, 21 | prss 4780 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ↔ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
| 23 | 19, 22 | sylib 218 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
| 24 | hashss 14350 | . . . . . . . 8 ⊢ ((𝐵 ∈ V ∧ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) | |
| 25 | 12, 23, 24 | sylancr 587 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) |
| 26 | 8, 11, 14, 18, 25 | xrltletrd 13097 | . . . . . 6 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘𝐵)) |
| 27 | 26 | ex 412 | . . . . 5 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
| 28 | 5, 6, 27 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
| 29 | 28 | imdistani 568 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| 30 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring) | |
| 31 | 4, 1, 2 | ring1ne0 20184 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 32 | 30, 31 | jca 511 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 33 | 29, 32 | impbii 209 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| 34 | 3, 33 | bitri 275 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ⊆ wss 3911 {cpr 4587 class class class wbr 5102 ‘cfv 6499 1c1 11045 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 2c2 12217 ♯chash 14271 Basecbs 17155 0gc0g 17378 1rcur 20066 Ringcrg 20118 NzRingcnzr 20397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-nzr 20398 |
| This theorem is referenced by: 0ringnnzr 20410 prmidl0 33394 qsidomlem1 33396 krull 33423 el0ldepsnzr 48429 |
| Copyright terms: Public domain | W3C validator |