MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr2hash Structured version   Visualization version   GIF version

Theorem isnzr2hash 20423
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20422. (Contributed by AV, 14-Apr-2019.)
Hypothesis
Ref Expression
isnzr2hash.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2hash (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))

Proof of Theorem isnzr2hash
StepHypRef Expression
1 eqid 2729 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 20418 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2hash.b . . . . . 6 𝐵 = (Base‘𝑅)
54, 1ringidcl 20169 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
64, 2ring0cl 20171 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
7 1xr 11193 . . . . . . . 8 1 ∈ ℝ*
87a1i 11 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 ∈ ℝ*)
9 prex 5379 . . . . . . . 8 {(1r𝑅), (0g𝑅)} ∈ V
10 hashxrcl 14283 . . . . . . . 8 ({(1r𝑅), (0g𝑅)} ∈ V → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
119, 10mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
124fvexi 6840 . . . . . . . 8 𝐵 ∈ V
13 hashxrcl 14283 . . . . . . . 8 (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*)
1412, 13mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘𝐵) ∈ ℝ*)
15 1lt2 12313 . . . . . . . 8 1 < 2
16 hashprg 14321 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) ↔ (♯‘{(1r𝑅), (0g𝑅)}) = 2))
1716biimpa 476 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) = 2)
1815, 17breqtrrid 5133 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘{(1r𝑅), (0g𝑅)}))
19 simpl 482 . . . . . . . . 9 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵))
20 fvex 6839 . . . . . . . . . 10 (1r𝑅) ∈ V
21 fvex 6839 . . . . . . . . . 10 (0g𝑅) ∈ V
2220, 21prss 4774 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ↔ {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
2319, 22sylib 218 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
24 hashss 14335 . . . . . . . 8 ((𝐵 ∈ V ∧ {(1r𝑅), (0g𝑅)} ⊆ 𝐵) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
2512, 23, 24sylancr 587 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
268, 11, 14, 18, 25xrltletrd 13082 . . . . . 6 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘𝐵))
2726ex 412 . . . . 5 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
285, 6, 27syl2anc 584 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
2928imdistani 568 . . 3 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
30 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring)
314, 1, 2ring1ne0 20203 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r𝑅) ≠ (0g𝑅))
3230, 31jca 511 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
3329, 32impbii 209 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
343, 33bitri 275 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  wss 3905  {cpr 4581   class class class wbr 5095  cfv 6486  1c1 11029  *cxr 11167   < clt 11168  cle 11169  2c2 12202  chash 14256  Basecbs 17139  0gc0g 17362  1rcur 20085  Ringcrg 20137  NzRingcnzr 20416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-n0 12404  df-xnn0 12477  df-z 12491  df-uz 12755  df-fz 13430  df-hash 14257  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-nzr 20417
This theorem is referenced by:  0ringnnzr  20429  prmidl0  33406  qsidomlem1  33408  krull  33435  el0ldepsnzr  48472
  Copyright terms: Public domain W3C validator