| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnzr2hash | Structured version Visualization version GIF version | ||
| Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20422. (Contributed by AV, 14-Apr-2019.) |
| Ref | Expression |
|---|---|
| isnzr2hash.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| isnzr2hash | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20418 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 4 | isnzr2hash.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 4, 1 | ringidcl 20169 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 6 | 4, 2 | ring0cl 20171 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
| 7 | 1xr 11193 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 ∈ ℝ*) |
| 9 | prex 5379 | . . . . . . . 8 ⊢ {(1r‘𝑅), (0g‘𝑅)} ∈ V | |
| 10 | hashxrcl 14283 | . . . . . . . 8 ⊢ ({(1r‘𝑅), (0g‘𝑅)} ∈ V → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) | |
| 11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) |
| 12 | 4 | fvexi 6840 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
| 13 | hashxrcl 14283 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
| 14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘𝐵) ∈ ℝ*) |
| 15 | 1lt2 12313 | . . . . . . . 8 ⊢ 1 < 2 | |
| 16 | hashprg 14321 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2)) | |
| 17 | 16 | biimpa 476 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2) |
| 18 | 15, 17 | breqtrrid 5133 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘{(1r‘𝑅), (0g‘𝑅)})) |
| 19 | simpl 482 | . . . . . . . . 9 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵)) | |
| 20 | fvex 6839 | . . . . . . . . . 10 ⊢ (1r‘𝑅) ∈ V | |
| 21 | fvex 6839 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
| 22 | 20, 21 | prss 4774 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ↔ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
| 23 | 19, 22 | sylib 218 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
| 24 | hashss 14335 | . . . . . . . 8 ⊢ ((𝐵 ∈ V ∧ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) | |
| 25 | 12, 23, 24 | sylancr 587 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) |
| 26 | 8, 11, 14, 18, 25 | xrltletrd 13082 | . . . . . 6 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘𝐵)) |
| 27 | 26 | ex 412 | . . . . 5 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
| 28 | 5, 6, 27 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
| 29 | 28 | imdistani 568 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| 30 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring) | |
| 31 | 4, 1, 2 | ring1ne0 20203 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 32 | 30, 31 | jca 511 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 33 | 29, 32 | impbii 209 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| 34 | 3, 33 | bitri 275 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ⊆ wss 3905 {cpr 4581 class class class wbr 5095 ‘cfv 6486 1c1 11029 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 2c2 12202 ♯chash 14256 Basecbs 17139 0gc0g 17362 1rcur 20085 Ringcrg 20137 NzRingcnzr 20416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-fz 13430 df-hash 14257 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-nzr 20417 |
| This theorem is referenced by: 0ringnnzr 20429 prmidl0 33406 qsidomlem1 33408 krull 33435 el0ldepsnzr 48472 |
| Copyright terms: Public domain | W3C validator |