MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o0 Structured version   Visualization version   GIF version

Theorem f1o0 6819
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
Assertion
Ref Expression
f1o0 ∅:∅–1-1-onto→∅

Proof of Theorem f1o0
StepHypRef Expression
1 eqid 2729 . 2 ∅ = ∅
2 f1o00 6817 . 2 (∅:∅–1-1-onto→∅ ↔ (∅ = ∅ ∧ ∅ = ∅))
31, 1, 2mpbir2an 711 1 ∅:∅–1-1-onto→∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4292  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  en0  8966  en0r  8968  brwdom2  9502  cnfcom  9629  ackbij2lem2  10168  eupth0  30116  f1ocnt  32698  1arithidom  33481  iso0  44269
  Copyright terms: Public domain W3C validator