Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1o0 | Structured version Visualization version GIF version |
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.) |
Ref | Expression |
---|---|
f1o0 | ⊢ ∅:∅–1-1-onto→∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∅ = ∅ | |
2 | f1o00 6747 | . 2 ⊢ (∅:∅–1-1-onto→∅ ↔ (∅ = ∅ ∧ ∅ = ∅)) | |
3 | 1, 1, 2 | mpbir2an 708 | 1 ⊢ ∅:∅–1-1-onto→∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∅c0 4262 –1-1-onto→wf1o 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 |
This theorem is referenced by: en0 8784 en0OLD 8785 en0r 8787 brwdom2 9308 cnfcom 9434 ackbij2lem2 9995 eupth0 28572 f1ocnt 31117 iso0 41893 |
Copyright terms: Public domain | W3C validator |