| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1o0 | Structured version Visualization version GIF version | ||
| Description: One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1o0 | ⊢ ∅:∅–1-1-onto→∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∅ = ∅ | |
| 2 | f1o00 6835 | . 2 ⊢ (∅:∅–1-1-onto→∅ ↔ (∅ = ∅ ∧ ∅ = ∅)) | |
| 3 | 1, 1, 2 | mpbir2an 711 | 1 ⊢ ∅:∅–1-1-onto→∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: en0 8989 en0r 8991 brwdom2 9526 cnfcom 9653 ackbij2lem2 10192 eupth0 30143 f1ocnt 32725 1arithidom 33508 iso0 44296 |
| Copyright terms: Public domain | W3C validator |