![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0posOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of 0pos 18391 as of 13-Oct-2024. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0posOLD | ⊢ ∅ ∈ Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . 2 ⊢ ∅ ∈ V | |
2 | ral0 4536 | . 2 ⊢ ∀𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎∅𝑎 ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑎) → 𝑎 = 𝑏) ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑐) → 𝑎∅𝑐)) | |
3 | base0 17263 | . . 3 ⊢ ∅ = (Base‘∅) | |
4 | df-ple 17331 | . . . 4 ⊢ le = Slot ;10 | |
5 | 4 | str0 17236 | . . 3 ⊢ ∅ = (le‘∅) |
6 | 3, 5 | ispos 18384 | . 2 ⊢ (∅ ∈ Poset ↔ (∅ ∈ V ∧ ∀𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎∅𝑎 ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑎) → 𝑎 = 𝑏) ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑐) → 𝑎∅𝑐)))) |
7 | 1, 2, 6 | mpbir2an 710 | 1 ⊢ ∅ ∈ Poset |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∅c0 4352 class class class wbr 5166 0cc0 11184 1c1 11185 ;cdc 12758 lecple 17318 Posetcpo 18377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-ple 17331 df-poset 18383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |