![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0posOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of 0pos 18278 as of 13-Oct-2024. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0posOLD | β’ β β Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . 2 β’ β β V | |
2 | ral0 4512 | . 2 β’ βπ β β βπ β β βπ β β (πβ π β§ ((πβ π β§ πβ π) β π = π) β§ ((πβ π β§ πβ π) β πβ π)) | |
3 | base0 17153 | . . 3 β’ β = (Baseββ ) | |
4 | df-ple 17221 | . . . 4 β’ le = Slot ;10 | |
5 | 4 | str0 17126 | . . 3 β’ β = (leββ ) |
6 | 3, 5 | ispos 18271 | . 2 β’ (β β Poset β (β β V β§ βπ β β βπ β β βπ β β (πβ π β§ ((πβ π β§ πβ π) β π = π) β§ ((πβ π β§ πβ π) β πβ π)))) |
7 | 1, 2, 6 | mpbir2an 709 | 1 β’ β β Poset |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 β wcel 2106 βwral 3061 Vcvv 3474 β c0 4322 class class class wbr 5148 0cc0 11112 1c1 11113 ;cdc 12681 lecple 17208 Posetcpo 18264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-slot 17119 df-ndx 17131 df-base 17149 df-ple 17221 df-poset 18270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |