MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0posOLD Structured version   Visualization version   GIF version

Theorem 0posOLD 17829
Description: Obsolete proof of 0pos 17828 as of 13-Oct-2024. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0posOLD ∅ ∈ Poset

Proof of Theorem 0posOLD
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5200 . 2 ∅ ∈ V
2 ral0 4424 . 2 𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎𝑎 ∧ ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏) ∧ ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))
3 base0 16765 . . 3 ∅ = (Base‘∅)
4 df-ple 16822 . . . 4 le = Slot 10
54str0 16742 . . 3 ∅ = (le‘∅)
63, 5ispos 17821 . 2 (∅ ∈ Poset ↔ (∅ ∈ V ∧ ∀𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎𝑎 ∧ ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏) ∧ ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))))
71, 2, 6mpbir2an 711 1 ∅ ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110  wral 3061  Vcvv 3408  c0 4237   class class class wbr 5053  0cc0 10729  1c1 10730  cdc 12293  lecple 16809  Posetcpo 17814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-1cn 10787  ax-addcl 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-nn 11831  df-slot 16735  df-ndx 16745  df-base 16761  df-ple 16822  df-poset 17820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator