MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipopos Structured version   Visualization version   GIF version

Theorem ipopos 18446
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipopos.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipopos 𝐼 ∈ Poset

Proof of Theorem ipopos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipopos.i . . . . 5 𝐼 = (toInc‘𝐹)
21fvexi 6844 . . . 4 𝐼 ∈ V
32a1i 11 . . 3 (𝐹 ∈ V → 𝐼 ∈ V)
41ipobas 18441 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘𝐼))
5 eqidd 2734 . . 3 (𝐹 ∈ V → (le‘𝐼) = (le‘𝐼))
6 ssid 3953 . . . 4 𝑎𝑎
7 eqid 2733 . . . . . 6 (le‘𝐼) = (le‘𝐼)
81, 7ipole 18444 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
983anidm23 1423 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
106, 9mpbiri 258 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹) → 𝑎(le‘𝐼)𝑎)
111, 7ipole 18444 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
121, 7ipole 18444 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑎𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
13123com23 1126 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
1411, 13anbi12d 632 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) ↔ (𝑎𝑏𝑏𝑎)))
15 simpl 482 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑎𝑏)
16 simpr 484 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑏𝑎)
1715, 16eqssd 3948 . . . 4 ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏)
1814, 17biimtrdi 253 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) → 𝑎 = 𝑏))
19 sstr 3939 . . . . 5 ((𝑎𝑏𝑏𝑐) → 𝑎𝑐)
2019a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))
21113adant3r3 1185 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
221, 7ipole 18444 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑐𝐹) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
23223adant3r1 1183 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
2421, 23anbi12d 632 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) ↔ (𝑎𝑏𝑏𝑐)))
251, 7ipole 18444 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑐𝐹) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
26253adant3r2 1184 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
2720, 24, 263imtr4d 294 . . 3 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) → 𝑎(le‘𝐼)𝑐))
283, 4, 5, 10, 18, 27isposd 18232 . 2 (𝐹 ∈ V → 𝐼 ∈ Poset)
29 fvprc 6822 . . . 4 𝐹 ∈ V → (toInc‘𝐹) = ∅)
301, 29eqtrid 2780 . . 3 𝐹 ∈ V → 𝐼 = ∅)
31 0pos 18231 . . 3 ∅ ∈ Poset
3230, 31eqeltrdi 2841 . 2 𝐹 ∈ V → 𝐼 ∈ Poset)
3328, 32pm2.61i 182 1 𝐼 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  c0 4282   class class class wbr 5095  cfv 6488  lecple 17172  Posetcpo 18217  toInccipo 18437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17125  df-tset 17184  df-ple 17185  df-ocomp 17186  df-poset 18223  df-ipo 18438
This theorem is referenced by:  isipodrs  18447  mrelatglb  18470  mrelatglb0  18471  mrelatlub  18472  mreclatBAD  18473  pwrssmgc  32990  nsgmgc  33386  nsgqusf1o  33390  ipolubdm  49114  ipolub  49115  ipoglbdm  49117  ipoglb  49118  mreclat  49124  topclat  49125  toplatjoin  49129  toplatmeet  49130
  Copyright terms: Public domain W3C validator