![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipopos | Structured version Visualization version GIF version |
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
ipopos.i | ⊢ 𝐼 = (toInc‘𝐹) |
Ref | Expression |
---|---|
ipopos | ⊢ 𝐼 ∈ Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipopos.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐹) | |
2 | 1 | fvexi 6460 | . . . 4 ⊢ 𝐼 ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐹 ∈ V → 𝐼 ∈ V) |
4 | 1 | ipobas 17541 | . . 3 ⊢ (𝐹 ∈ V → 𝐹 = (Base‘𝐼)) |
5 | eqidd 2778 | . . 3 ⊢ (𝐹 ∈ V → (le‘𝐼) = (le‘𝐼)) | |
6 | ssid 3841 | . . . 4 ⊢ 𝑎 ⊆ 𝑎 | |
7 | eqid 2777 | . . . . . 6 ⊢ (le‘𝐼) = (le‘𝐼) | |
8 | 1, 7 | ipole 17544 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) → (𝑎(le‘𝐼)𝑎 ↔ 𝑎 ⊆ 𝑎)) |
9 | 8 | 3anidm23 1493 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹) → (𝑎(le‘𝐼)𝑎 ↔ 𝑎 ⊆ 𝑎)) |
10 | 6, 9 | mpbiri 250 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹) → 𝑎(le‘𝐼)𝑎) |
11 | 1, 7 | ipole 17544 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) → (𝑎(le‘𝐼)𝑏 ↔ 𝑎 ⊆ 𝑏)) |
12 | 1, 7 | ipole 17544 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) → (𝑏(le‘𝐼)𝑎 ↔ 𝑏 ⊆ 𝑎)) |
13 | 12 | 3com23 1117 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) → (𝑏(le‘𝐼)𝑎 ↔ 𝑏 ⊆ 𝑎)) |
14 | 11, 13 | anbi12d 624 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) → ((𝑎(le‘𝐼)𝑏 ∧ 𝑏(le‘𝐼)𝑎) ↔ (𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎))) |
15 | simpl 476 | . . . . 5 ⊢ ((𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎) → 𝑎 ⊆ 𝑏) | |
16 | simpr 479 | . . . . 5 ⊢ ((𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎) → 𝑏 ⊆ 𝑎) | |
17 | 15, 16 | eqssd 3837 | . . . 4 ⊢ ((𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎) → 𝑎 = 𝑏) |
18 | 14, 17 | syl6bi 245 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) → ((𝑎(le‘𝐼)𝑏 ∧ 𝑏(le‘𝐼)𝑎) → 𝑎 = 𝑏)) |
19 | sstr 3828 | . . . . 5 ⊢ ((𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐) → 𝑎 ⊆ 𝑐) | |
20 | 19 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ V ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ((𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐) → 𝑎 ⊆ 𝑐)) |
21 | 11 | 3adant3r3 1192 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → (𝑎(le‘𝐼)𝑏 ↔ 𝑎 ⊆ 𝑏)) |
22 | 1, 7 | ipole 17544 | . . . . . 6 ⊢ ((𝐹 ∈ V ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) → (𝑏(le‘𝐼)𝑐 ↔ 𝑏 ⊆ 𝑐)) |
23 | 22 | 3adant3r1 1190 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → (𝑏(le‘𝐼)𝑐 ↔ 𝑏 ⊆ 𝑐)) |
24 | 21, 23 | anbi12d 624 | . . . 4 ⊢ ((𝐹 ∈ V ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ((𝑎(le‘𝐼)𝑏 ∧ 𝑏(le‘𝐼)𝑐) ↔ (𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐))) |
25 | 1, 7 | ipole 17544 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) → (𝑎(le‘𝐼)𝑐 ↔ 𝑎 ⊆ 𝑐)) |
26 | 25 | 3adant3r2 1191 | . . . 4 ⊢ ((𝐹 ∈ V ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → (𝑎(le‘𝐼)𝑐 ↔ 𝑎 ⊆ 𝑐)) |
27 | 20, 24, 26 | 3imtr4d 286 | . . 3 ⊢ ((𝐹 ∈ V ∧ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ((𝑎(le‘𝐼)𝑏 ∧ 𝑏(le‘𝐼)𝑐) → 𝑎(le‘𝐼)𝑐)) |
28 | 3, 4, 5, 10, 18, 27 | isposd 17341 | . 2 ⊢ (𝐹 ∈ V → 𝐼 ∈ Poset) |
29 | fvprc 6439 | . . . 4 ⊢ (¬ 𝐹 ∈ V → (toInc‘𝐹) = ∅) | |
30 | 1, 29 | syl5eq 2825 | . . 3 ⊢ (¬ 𝐹 ∈ V → 𝐼 = ∅) |
31 | 0pos 17340 | . . 3 ⊢ ∅ ∈ Poset | |
32 | 30, 31 | syl6eqel 2866 | . 2 ⊢ (¬ 𝐹 ∈ V → 𝐼 ∈ Poset) |
33 | 28, 32 | pm2.61i 177 | 1 ⊢ 𝐼 ∈ Poset |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ⊆ wss 3791 ∅c0 4140 class class class wbr 4886 ‘cfv 6135 lecple 16345 Posetcpo 17326 toInccipo 17537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-tset 16357 df-ple 16358 df-ocomp 16359 df-poset 17332 df-ipo 17538 |
This theorem is referenced by: isipodrs 17547 mrelatglb 17570 mrelatglb0 17571 mrelatlub 17572 mreclatBAD 17573 |
Copyright terms: Public domain | W3C validator |