MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipopos Structured version   Visualization version   GIF version

Theorem ipopos 18581
Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
ipopos.i 𝐼 = (toInc‘𝐹)
Assertion
Ref Expression
ipopos 𝐼 ∈ Poset

Proof of Theorem ipopos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipopos.i . . . . 5 𝐼 = (toInc‘𝐹)
21fvexi 6920 . . . 4 𝐼 ∈ V
32a1i 11 . . 3 (𝐹 ∈ V → 𝐼 ∈ V)
41ipobas 18576 . . 3 (𝐹 ∈ V → 𝐹 = (Base‘𝐼))
5 eqidd 2738 . . 3 (𝐹 ∈ V → (le‘𝐼) = (le‘𝐼))
6 ssid 4006 . . . 4 𝑎𝑎
7 eqid 2737 . . . . . 6 (le‘𝐼) = (le‘𝐼)
81, 7ipole 18579 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
983anidm23 1423 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹) → (𝑎(le‘𝐼)𝑎𝑎𝑎))
106, 9mpbiri 258 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹) → 𝑎(le‘𝐼)𝑎)
111, 7ipole 18579 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
121, 7ipole 18579 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑎𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
13123com23 1127 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → (𝑏(le‘𝐼)𝑎𝑏𝑎))
1411, 13anbi12d 632 . . . 4 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) ↔ (𝑎𝑏𝑏𝑎)))
15 simpl 482 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑎𝑏)
16 simpr 484 . . . . 5 ((𝑎𝑏𝑏𝑎) → 𝑏𝑎)
1715, 16eqssd 4001 . . . 4 ((𝑎𝑏𝑏𝑎) → 𝑎 = 𝑏)
1814, 17biimtrdi 253 . . 3 ((𝐹 ∈ V ∧ 𝑎𝐹𝑏𝐹) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑎) → 𝑎 = 𝑏))
19 sstr 3992 . . . . 5 ((𝑎𝑏𝑏𝑐) → 𝑎𝑐)
2019a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎𝑏𝑏𝑐) → 𝑎𝑐))
21113adant3r3 1185 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑏𝑎𝑏))
221, 7ipole 18579 . . . . . 6 ((𝐹 ∈ V ∧ 𝑏𝐹𝑐𝐹) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
23223adant3r1 1183 . . . . 5 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑏(le‘𝐼)𝑐𝑏𝑐))
2421, 23anbi12d 632 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) ↔ (𝑎𝑏𝑏𝑐)))
251, 7ipole 18579 . . . . 5 ((𝐹 ∈ V ∧ 𝑎𝐹𝑐𝐹) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
26253adant3r2 1184 . . . 4 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → (𝑎(le‘𝐼)𝑐𝑎𝑐))
2720, 24, 263imtr4d 294 . . 3 ((𝐹 ∈ V ∧ (𝑎𝐹𝑏𝐹𝑐𝐹)) → ((𝑎(le‘𝐼)𝑏𝑏(le‘𝐼)𝑐) → 𝑎(le‘𝐼)𝑐))
283, 4, 5, 10, 18, 27isposd 18368 . 2 (𝐹 ∈ V → 𝐼 ∈ Poset)
29 fvprc 6898 . . . 4 𝐹 ∈ V → (toInc‘𝐹) = ∅)
301, 29eqtrid 2789 . . 3 𝐹 ∈ V → 𝐼 = ∅)
31 0pos 18367 . . 3 ∅ ∈ Poset
3230, 31eqeltrdi 2849 . 2 𝐹 ∈ V → 𝐼 ∈ Poset)
3328, 32pm2.61i 182 1 𝐼 ∈ Poset
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  c0 4333   class class class wbr 5143  cfv 6561  lecple 17304  Posetcpo 18353  toInccipo 18572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-tset 17316  df-ple 17317  df-ocomp 17318  df-poset 18359  df-ipo 18573
This theorem is referenced by:  isipodrs  18582  mrelatglb  18605  mrelatglb0  18606  mrelatlub  18607  mreclatBAD  18608  pwrssmgc  32990  nsgmgc  33440  nsgqusf1o  33444  ipolubdm  48876  ipolub  48877  ipoglbdm  48879  ipoglb  48880  mreclat  48886  topclat  48887  toplatjoin  48891  toplatmeet  48892
  Copyright terms: Public domain W3C validator