HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh2 Structured version   Visualization version   GIF version

Theorem issh2 31181
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem issh2
StepHypRef Expression
1 issh 31180 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
2 ax-hfvadd 30972 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
3 ffun 6649 . . . . . . 7 ( + :( ℋ × ℋ)⟶ ℋ → Fun + )
42, 3ax-mp 5 . . . . . 6 Fun +
5 xpss12 5626 . . . . . . . 8 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
65anidms 566 . . . . . . 7 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
72fdmi 6657 . . . . . . 7 dom + = ( ℋ × ℋ)
86, 7sseqtrrdi 3971 . . . . . 6 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom + )
9 funimassov 7518 . . . . . 6 ((Fun + ∧ (𝐻 × 𝐻) ⊆ dom + ) → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
104, 8, 9sylancr 587 . . . . 5 (𝐻 ⊆ ℋ → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
11 ax-hfvmul 30977 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
12 ffun 6649 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → Fun · )
1311, 12ax-mp 5 . . . . . 6 Fun ·
14 xpss2 5631 . . . . . . 7 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
1511fdmi 6657 . . . . . . 7 dom · = (ℂ × ℋ)
1614, 15sseqtrrdi 3971 . . . . . 6 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom · )
17 funimassov 7518 . . . . . 6 ((Fun · ∧ (ℂ × 𝐻) ⊆ dom · ) → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1813, 16, 17sylancr 587 . . . . 5 (𝐻 ⊆ ℋ → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1910, 18anbi12d 632 . . . 4 (𝐻 ⊆ ℋ → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2019adantr 480 . . 3 ((𝐻 ⊆ ℋ ∧ 0𝐻) → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2120pm5.32i 574 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
221, 21bitri 275 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wral 3047  wss 3897   × cxp 5609  dom cdm 5611  cima 5614  Fun wfun 6470  wf 6472  (class class class)co 7341  cc 10999  chba 30891   + cva 30892   · csm 30893  0c0v 30896   S csh 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-hilex 30971  ax-hfvadd 30972  ax-hfvmul 30977
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-sh 31179
This theorem is referenced by:  shaddcl  31189  shmulcl  31190  issh3  31191  helch  31215  hsn0elch  31220  hhshsslem2  31240  ocsh  31255  shscli  31289  shintcli  31301  imaelshi  32030
  Copyright terms: Public domain W3C validator