![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > issh2 | Structured version Visualization version GIF version |
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issh2 | ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 31240 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | ax-hfvadd 31032 | . . . . . . 7 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
3 | ffun 6750 | . . . . . . 7 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → Fun +ℎ ) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun +ℎ |
5 | xpss12 5715 | . . . . . . . 8 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
6 | 5 | anidms 566 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) |
7 | 2 | fdmi 6758 | . . . . . . 7 ⊢ dom +ℎ = ( ℋ × ℋ) |
8 | 6, 7 | sseqtrrdi 4060 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom +ℎ ) |
9 | funimassov 7627 | . . . . . 6 ⊢ ((Fun +ℎ ∧ (𝐻 × 𝐻) ⊆ dom +ℎ ) → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) | |
10 | 4, 8, 9 | sylancr 586 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) |
11 | ax-hfvmul 31037 | . . . . . . 7 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
12 | ffun 6750 | . . . . . . 7 ⊢ ( ·ℎ :(ℂ × ℋ)⟶ ℋ → Fun ·ℎ ) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ Fun ·ℎ |
14 | xpss2 5720 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ)) | |
15 | 11 | fdmi 6758 | . . . . . . 7 ⊢ dom ·ℎ = (ℂ × ℋ) |
16 | 14, 15 | sseqtrrdi 4060 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom ·ℎ ) |
17 | funimassov 7627 | . . . . . 6 ⊢ ((Fun ·ℎ ∧ (ℂ × 𝐻) ⊆ dom ·ℎ ) → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) | |
18 | 13, 16, 17 | sylancr 586 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
19 | 10, 18 | anbi12d 631 | . . . 4 ⊢ (𝐻 ⊆ ℋ → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
20 | 19 | adantr 480 | . . 3 ⊢ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
21 | 20 | pm5.32i 574 | . 2 ⊢ (((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
22 | 1, 21 | bitri 275 | 1 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 × cxp 5698 dom cdm 5700 “ cima 5703 Fun wfun 6567 ⟶wf 6569 (class class class)co 7448 ℂcc 11182 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 0ℎc0v 30956 Sℋ csh 30960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hilex 31031 ax-hfvadd 31032 ax-hfvmul 31037 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-sh 31239 |
This theorem is referenced by: shaddcl 31249 shmulcl 31250 issh3 31251 helch 31275 hsn0elch 31280 hhshsslem2 31300 ocsh 31315 shscli 31349 shintcli 31361 imaelshi 32090 |
Copyright terms: Public domain | W3C validator |