Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > issh2 | Structured version Visualization version GIF version |
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issh2 | ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 29570 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | ax-hfvadd 29362 | . . . . . . 7 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
3 | ffun 6603 | . . . . . . 7 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → Fun +ℎ ) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun +ℎ |
5 | xpss12 5604 | . . . . . . . 8 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
6 | 5 | anidms 567 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) |
7 | 2 | fdmi 6612 | . . . . . . 7 ⊢ dom +ℎ = ( ℋ × ℋ) |
8 | 6, 7 | sseqtrrdi 3972 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom +ℎ ) |
9 | funimassov 7449 | . . . . . 6 ⊢ ((Fun +ℎ ∧ (𝐻 × 𝐻) ⊆ dom +ℎ ) → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) | |
10 | 4, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) |
11 | ax-hfvmul 29367 | . . . . . . 7 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
12 | ffun 6603 | . . . . . . 7 ⊢ ( ·ℎ :(ℂ × ℋ)⟶ ℋ → Fun ·ℎ ) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ Fun ·ℎ |
14 | xpss2 5609 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ)) | |
15 | 11 | fdmi 6612 | . . . . . . 7 ⊢ dom ·ℎ = (ℂ × ℋ) |
16 | 14, 15 | sseqtrrdi 3972 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom ·ℎ ) |
17 | funimassov 7449 | . . . . . 6 ⊢ ((Fun ·ℎ ∧ (ℂ × 𝐻) ⊆ dom ·ℎ ) → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) | |
18 | 13, 16, 17 | sylancr 587 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
19 | 10, 18 | anbi12d 631 | . . . 4 ⊢ (𝐻 ⊆ ℋ → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
20 | 19 | adantr 481 | . . 3 ⊢ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
21 | 20 | pm5.32i 575 | . 2 ⊢ (((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
22 | 1, 21 | bitri 274 | 1 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 × cxp 5587 dom cdm 5589 “ cima 5592 Fun wfun 6427 ⟶wf 6429 (class class class)co 7275 ℂcc 10869 ℋchba 29281 +ℎ cva 29282 ·ℎ csm 29283 0ℎc0v 29286 Sℋ csh 29290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29361 ax-hfvadd 29362 ax-hfvmul 29367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-sh 29569 |
This theorem is referenced by: shaddcl 29579 shmulcl 29580 issh3 29581 helch 29605 hsn0elch 29610 hhshsslem2 29630 ocsh 29645 shscli 29679 shintcli 29691 imaelshi 30420 |
Copyright terms: Public domain | W3C validator |