![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > issh2 | Structured version Visualization version GIF version |
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issh2 | ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 31237 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | ax-hfvadd 31029 | . . . . . . 7 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
3 | ffun 6740 | . . . . . . 7 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → Fun +ℎ ) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun +ℎ |
5 | xpss12 5704 | . . . . . . . 8 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
6 | 5 | anidms 566 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) |
7 | 2 | fdmi 6748 | . . . . . . 7 ⊢ dom +ℎ = ( ℋ × ℋ) |
8 | 6, 7 | sseqtrrdi 4047 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom +ℎ ) |
9 | funimassov 7610 | . . . . . 6 ⊢ ((Fun +ℎ ∧ (𝐻 × 𝐻) ⊆ dom +ℎ ) → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) | |
10 | 4, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) |
11 | ax-hfvmul 31034 | . . . . . . 7 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
12 | ffun 6740 | . . . . . . 7 ⊢ ( ·ℎ :(ℂ × ℋ)⟶ ℋ → Fun ·ℎ ) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ Fun ·ℎ |
14 | xpss2 5709 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ)) | |
15 | 11 | fdmi 6748 | . . . . . . 7 ⊢ dom ·ℎ = (ℂ × ℋ) |
16 | 14, 15 | sseqtrrdi 4047 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom ·ℎ ) |
17 | funimassov 7610 | . . . . . 6 ⊢ ((Fun ·ℎ ∧ (ℂ × 𝐻) ⊆ dom ·ℎ ) → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) | |
18 | 13, 16, 17 | sylancr 587 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
19 | 10, 18 | anbi12d 632 | . . . 4 ⊢ (𝐻 ⊆ ℋ → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
20 | 19 | adantr 480 | . . 3 ⊢ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
21 | 20 | pm5.32i 574 | . 2 ⊢ (((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
22 | 1, 21 | bitri 275 | 1 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 × cxp 5687 dom cdm 5689 “ cima 5692 Fun wfun 6557 ⟶wf 6559 (class class class)co 7431 ℂcc 11151 ℋchba 30948 +ℎ cva 30949 ·ℎ csm 30950 0ℎc0v 30953 Sℋ csh 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-hilex 31028 ax-hfvadd 31029 ax-hfvmul 31034 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-sh 31236 |
This theorem is referenced by: shaddcl 31246 shmulcl 31247 issh3 31248 helch 31272 hsn0elch 31277 hhshsslem2 31297 ocsh 31312 shscli 31346 shintcli 31358 imaelshi 32087 |
Copyright terms: Public domain | W3C validator |