HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh2 Structured version   Visualization version   GIF version

Theorem issh2 31210
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem issh2
StepHypRef Expression
1 issh 31209 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
2 ax-hfvadd 31001 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
3 ffun 6662 . . . . . . 7 ( + :( ℋ × ℋ)⟶ ℋ → Fun + )
42, 3ax-mp 5 . . . . . 6 Fun +
5 xpss12 5636 . . . . . . . 8 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
65anidms 566 . . . . . . 7 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
72fdmi 6670 . . . . . . 7 dom + = ( ℋ × ℋ)
86, 7sseqtrrdi 3972 . . . . . 6 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom + )
9 funimassov 7532 . . . . . 6 ((Fun + ∧ (𝐻 × 𝐻) ⊆ dom + ) → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
104, 8, 9sylancr 587 . . . . 5 (𝐻 ⊆ ℋ → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
11 ax-hfvmul 31006 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
12 ffun 6662 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → Fun · )
1311, 12ax-mp 5 . . . . . 6 Fun ·
14 xpss2 5641 . . . . . . 7 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
1511fdmi 6670 . . . . . . 7 dom · = (ℂ × ℋ)
1614, 15sseqtrrdi 3972 . . . . . 6 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom · )
17 funimassov 7532 . . . . . 6 ((Fun · ∧ (ℂ × 𝐻) ⊆ dom · ) → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1813, 16, 17sylancr 587 . . . . 5 (𝐻 ⊆ ℋ → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1910, 18anbi12d 632 . . . 4 (𝐻 ⊆ ℋ → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2019adantr 480 . . 3 ((𝐻 ⊆ ℋ ∧ 0𝐻) → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2120pm5.32i 574 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
221, 21bitri 275 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113  wral 3048  wss 3898   × cxp 5619  dom cdm 5621  cima 5624  Fun wfun 6483  wf 6485  (class class class)co 7355  cc 11015  chba 30920   + cva 30921   · csm 30922  0c0v 30925   S csh 30929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-hilex 31000  ax-hfvadd 31001  ax-hfvmul 31006
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-sh 31208
This theorem is referenced by:  shaddcl  31218  shmulcl  31219  issh3  31220  helch  31244  hsn0elch  31249  hhshsslem2  31269  ocsh  31284  shscli  31318  shintcli  31330  imaelshi  32059
  Copyright terms: Public domain W3C validator