HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh2 Structured version   Visualization version   GIF version

Theorem issh2 29472
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem issh2
StepHypRef Expression
1 issh 29471 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
2 ax-hfvadd 29263 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
3 ffun 6587 . . . . . . 7 ( + :( ℋ × ℋ)⟶ ℋ → Fun + )
42, 3ax-mp 5 . . . . . 6 Fun +
5 xpss12 5595 . . . . . . . 8 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
65anidms 566 . . . . . . 7 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
72fdmi 6596 . . . . . . 7 dom + = ( ℋ × ℋ)
86, 7sseqtrrdi 3968 . . . . . 6 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom + )
9 funimassov 7427 . . . . . 6 ((Fun + ∧ (𝐻 × 𝐻) ⊆ dom + ) → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
104, 8, 9sylancr 586 . . . . 5 (𝐻 ⊆ ℋ → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
11 ax-hfvmul 29268 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
12 ffun 6587 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → Fun · )
1311, 12ax-mp 5 . . . . . 6 Fun ·
14 xpss2 5600 . . . . . . 7 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
1511fdmi 6596 . . . . . . 7 dom · = (ℂ × ℋ)
1614, 15sseqtrrdi 3968 . . . . . 6 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom · )
17 funimassov 7427 . . . . . 6 ((Fun · ∧ (ℂ × 𝐻) ⊆ dom · ) → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1813, 16, 17sylancr 586 . . . . 5 (𝐻 ⊆ ℋ → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1910, 18anbi12d 630 . . . 4 (𝐻 ⊆ ℋ → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2019adantr 480 . . 3 ((𝐻 ⊆ ℋ ∧ 0𝐻) → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2120pm5.32i 574 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
221, 21bitri 274 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  wral 3063  wss 3883   × cxp 5578  dom cdm 5580  cima 5583  Fun wfun 6412  wf 6414  (class class class)co 7255  cc 10800  chba 29182   + cva 29183   · csm 29184  0c0v 29187   S csh 29191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-hilex 29262  ax-hfvadd 29263  ax-hfvmul 29268
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-sh 29470
This theorem is referenced by:  shaddcl  29480  shmulcl  29481  issh3  29482  helch  29506  hsn0elch  29511  hhshsslem2  29531  ocsh  29546  shscli  29580  shintcli  29592  imaelshi  30321
  Copyright terms: Public domain W3C validator