| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > issh2 | Structured version Visualization version GIF version | ||
| Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| issh2 | ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh 31144 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
| 2 | ax-hfvadd 30936 | . . . . . . 7 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 3 | ffun 6694 | . . . . . . 7 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → Fun +ℎ ) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun +ℎ |
| 5 | xpss12 5656 | . . . . . . . 8 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
| 6 | 5 | anidms 566 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) |
| 7 | 2 | fdmi 6702 | . . . . . . 7 ⊢ dom +ℎ = ( ℋ × ℋ) |
| 8 | 6, 7 | sseqtrrdi 3991 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom +ℎ ) |
| 9 | funimassov 7569 | . . . . . 6 ⊢ ((Fun +ℎ ∧ (𝐻 × 𝐻) ⊆ dom +ℎ ) → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) | |
| 10 | 4, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) |
| 11 | ax-hfvmul 30941 | . . . . . . 7 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 12 | ffun 6694 | . . . . . . 7 ⊢ ( ·ℎ :(ℂ × ℋ)⟶ ℋ → Fun ·ℎ ) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ Fun ·ℎ |
| 14 | xpss2 5661 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ)) | |
| 15 | 11 | fdmi 6702 | . . . . . . 7 ⊢ dom ·ℎ = (ℂ × ℋ) |
| 16 | 14, 15 | sseqtrrdi 3991 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom ·ℎ ) |
| 17 | funimassov 7569 | . . . . . 6 ⊢ ((Fun ·ℎ ∧ (ℂ × 𝐻) ⊆ dom ·ℎ ) → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) | |
| 18 | 13, 16, 17 | sylancr 587 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
| 19 | 10, 18 | anbi12d 632 | . . . 4 ⊢ (𝐻 ⊆ ℋ → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
| 21 | 20 | pm5.32i 574 | . 2 ⊢ (((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
| 22 | 1, 21 | bitri 275 | 1 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 × cxp 5639 dom cdm 5641 “ cima 5644 Fun wfun 6508 ⟶wf 6510 (class class class)co 7390 ℂcc 11073 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 0ℎc0v 30860 Sℋ csh 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hilex 30935 ax-hfvadd 30936 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-sh 31143 |
| This theorem is referenced by: shaddcl 31153 shmulcl 31154 issh3 31155 helch 31179 hsn0elch 31184 hhshsslem2 31204 ocsh 31219 shscli 31253 shintcli 31265 imaelshi 31994 |
| Copyright terms: Public domain | W3C validator |