HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh2 Structured version   Visualization version   GIF version

Theorem issh2 31190
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Distinct variable group:   𝑥,𝑦,𝐻

Proof of Theorem issh2
StepHypRef Expression
1 issh 31189 . 2 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
2 ax-hfvadd 30981 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
3 ffun 6709 . . . . . . 7 ( + :( ℋ × ℋ)⟶ ℋ → Fun + )
42, 3ax-mp 5 . . . . . 6 Fun +
5 xpss12 5669 . . . . . . . 8 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
65anidms 566 . . . . . . 7 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
72fdmi 6717 . . . . . . 7 dom + = ( ℋ × ℋ)
86, 7sseqtrrdi 4000 . . . . . 6 (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom + )
9 funimassov 7584 . . . . . 6 ((Fun + ∧ (𝐻 × 𝐻) ⊆ dom + ) → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
104, 8, 9sylancr 587 . . . . 5 (𝐻 ⊆ ℋ → (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻))
11 ax-hfvmul 30986 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
12 ffun 6709 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → Fun · )
1311, 12ax-mp 5 . . . . . 6 Fun ·
14 xpss2 5674 . . . . . . 7 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
1511fdmi 6717 . . . . . . 7 dom · = (ℂ × ℋ)
1614, 15sseqtrrdi 4000 . . . . . 6 (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom · )
17 funimassov 7584 . . . . . 6 ((Fun · ∧ (ℂ × 𝐻) ⊆ dom · ) → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1813, 16, 17sylancr 587 . . . . 5 (𝐻 ⊆ ℋ → (( · “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
1910, 18anbi12d 632 . . . 4 (𝐻 ⊆ ℋ → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2019adantr 480 . . 3 ((𝐻 ⊆ ℋ ∧ 0𝐻) → ((( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
2120pm5.32i 574 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
221, 21bitri 275 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wral 3051  wss 3926   × cxp 5652  dom cdm 5654  cima 5657  Fun wfun 6525  wf 6527  (class class class)co 7405  cc 11127  chba 30900   + cva 30901   · csm 30902  0c0v 30905   S csh 30909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-hilex 30980  ax-hfvadd 30981  ax-hfvmul 30986
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-sh 31188
This theorem is referenced by:  shaddcl  31198  shmulcl  31199  issh3  31200  helch  31224  hsn0elch  31229  hhshsslem2  31249  ocsh  31264  shscli  31298  shintcli  31310  imaelshi  32039
  Copyright terms: Public domain W3C validator