|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| xrltso | ⊢ < Or ℝ* | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xrlttri 13182 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | xrlttr 13183 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5628 | 1 ⊢ < Or ℝ* | 
| Colors of variables: wff setvar class | 
| Syntax hints: Or wor 5590 ℝ*cxr 11295 < clt 11296 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 | 
| This theorem is referenced by: xrlttri2 13185 xrlttri3 13186 xrltne 13206 xmullem 13307 xmulasslem 13328 supxr 13356 supxrcl 13358 supxrun 13359 supxrmnf 13360 supxrunb1 13362 supxrunb2 13363 supxrub 13367 supxrlub 13368 infxrcl 13376 infxrlb 13377 infxrgelb 13378 xrinf0 13381 infmremnf 13386 limsupval 15511 limsupgval 15513 limsupgre 15518 ramval 17047 ramcl2lem 17048 prdsdsfn 17511 prdsdsval 17524 imasdsfn 17560 imasdsval 17561 prdsmet 24381 xpsdsval 24392 prdsbl 24505 tmsxpsval2 24553 nmoval 24737 xrge0tsms2 24858 metdsval 24870 iccpnfhmeo 24977 xrhmeo 24978 ovolval 25509 ovolf 25518 ovolctb 25526 itg2val 25764 mdegval 26103 mdegldg 26106 mdegxrf 26108 mdegcl 26109 aannenlem2 26372 nmooval 30783 nmoo0 30811 nmopval 31876 nmfnval 31896 nmop0 32006 nmfn0 32007 xrsupssd 32764 xrge0infssd 32766 infxrge0lb 32769 infxrge0glb 32770 infxrge0gelb 32771 xrsclat 33014 xrge0iifiso 33935 esumval 34048 esumnul 34050 esum0 34051 gsumesum 34061 esumsnf 34066 esumpcvgval 34080 esum2d 34095 omsfval 34297 omsf 34299 oms0 34300 omssubaddlem 34302 omssubadd 34303 mblfinlem2 37666 ovoliunnfl 37670 voliunnfl 37672 volsupnfl 37673 itg2addnclem 37679 radcnvrat 44338 infxrglb 45356 xrgtso 45361 infxr 45383 infxrunb2 45384 infxrpnf 45462 limsup0 45714 limsuppnfdlem 45721 limsupequzlem 45742 supcnvlimsup 45760 limsuplt2 45773 liminfval 45779 limsupge 45781 liminfgval 45782 liminfval2 45788 limsup10ex 45793 liminf10ex 45794 liminflelimsuplem 45795 cnrefiisplem 45849 etransclem48 46302 sge0val 46386 sge0z 46395 sge00 46396 sge0sn 46399 sge0tsms 46400 ovnval2 46565 smflimsuplem1 46840 smflimsuplem2 46841 smflimsuplem4 46843 smflimsuplem7 46846 | 
| Copyright terms: Public domain | W3C validator |