| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltso | ⊢ < Or ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri 13099 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | xrlttr 13100 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5583 | 1 ⊢ < Or ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5545 ℝ*cxr 11207 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 |
| This theorem is referenced by: xrlttri2 13102 xrlttri3 13103 xrltne 13123 xmullem 13224 xmulasslem 13245 supxr 13273 supxrcl 13275 supxrun 13276 supxrmnf 13277 supxrunb1 13279 supxrunb2 13280 supxrub 13284 supxrlub 13285 xrsupssd 13293 infxrcl 13294 infxrlb 13295 infxrgelb 13296 xrinf0 13299 infmremnf 13304 limsupval 15440 limsupgval 15442 limsupgre 15447 ramval 16979 ramcl2lem 16980 prdsdsfn 17428 prdsdsval 17441 imasdsfn 17477 imasdsval 17478 prdsmet 24258 xpsdsval 24269 prdsbl 24379 tmsxpsval2 24427 nmoval 24603 xrge0tsms2 24724 metdsval 24736 iccpnfhmeo 24843 xrhmeo 24844 ovolval 25374 ovolf 25383 ovolctb 25391 itg2val 25629 mdegval 25968 mdegldg 25971 mdegxrf 25973 mdegcl 25974 aannenlem2 26237 nmooval 30692 nmoo0 30720 nmopval 31785 nmfnval 31805 nmop0 31915 nmfn0 31916 xrge0infssd 32684 infxrge0lb 32687 infxrge0glb 32688 infxrge0gelb 32689 xrsclat 32949 xrge0iifiso 33925 esumval 34036 esumnul 34038 esum0 34039 gsumesum 34049 esumsnf 34054 esumpcvgval 34068 esum2d 34083 omsfval 34285 omsf 34287 oms0 34288 omssubaddlem 34290 omssubadd 34291 mblfinlem2 37652 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 itg2addnclem 37665 radcnvrat 44303 infxrglb 45336 xrgtso 45341 infxr 45363 infxrunb2 45364 infxrpnf 45442 limsup0 45692 limsuppnfdlem 45699 limsupequzlem 45720 supcnvlimsup 45738 limsuplt2 45751 liminfval 45757 limsupge 45759 liminfgval 45760 liminfval2 45766 limsup10ex 45771 liminf10ex 45772 liminflelimsuplem 45773 cnrefiisplem 45827 etransclem48 46280 sge0val 46364 sge0z 46373 sge00 46374 sge0sn 46377 sge0tsms 46378 ovnval2 46543 smflimsuplem1 46818 smflimsuplem2 46819 smflimsuplem4 46821 smflimsuplem7 46824 |
| Copyright terms: Public domain | W3C validator |