| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltso | ⊢ < Or ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri 13035 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | xrlttr 13036 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5561 | 1 ⊢ < Or ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5523 ℝ*cxr 11142 < clt 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 |
| This theorem is referenced by: xrlttri2 13038 xrlttri3 13039 xrltne 13059 xmullem 13160 xmulasslem 13181 supxr 13209 supxrcl 13211 supxrun 13212 supxrmnf 13213 supxrunb1 13215 supxrunb2 13216 supxrub 13220 supxrlub 13221 xrsupssd 13229 infxrcl 13230 infxrlb 13231 infxrgelb 13232 xrinf0 13235 infmremnf 13240 limsupval 15378 limsupgval 15380 limsupgre 15385 ramval 16917 ramcl2lem 16918 prdsdsfn 17366 prdsdsval 17379 imasdsfn 17415 imasdsval 17416 prdsmet 24283 xpsdsval 24294 prdsbl 24404 tmsxpsval2 24452 nmoval 24628 xrge0tsms2 24749 metdsval 24761 iccpnfhmeo 24868 xrhmeo 24869 ovolval 25399 ovolf 25408 ovolctb 25416 itg2val 25654 mdegval 25993 mdegldg 25996 mdegxrf 25998 mdegcl 25999 aannenlem2 26262 nmooval 30738 nmoo0 30766 nmopval 31831 nmfnval 31851 nmop0 31961 nmfn0 31962 xrge0infssd 32739 infxrge0lb 32742 infxrge0glb 32743 infxrge0gelb 32744 xrsclat 32987 xrge0iifiso 33943 esumval 34054 esumnul 34056 esum0 34057 gsumesum 34067 esumsnf 34072 esumpcvgval 34086 esum2d 34101 omsfval 34302 omsf 34304 oms0 34305 omssubaddlem 34307 omssubadd 34308 mblfinlem2 37697 ovoliunnfl 37701 voliunnfl 37703 volsupnfl 37704 itg2addnclem 37710 radcnvrat 44346 infxrglb 45378 xrgtso 45383 infxr 45404 infxrunb2 45405 infxrpnf 45483 limsup0 45731 limsuppnfdlem 45738 limsupequzlem 45759 supcnvlimsup 45777 limsuplt2 45790 liminfval 45796 limsupge 45798 liminfgval 45799 liminfval2 45805 limsup10ex 45810 liminf10ex 45811 liminflelimsuplem 45812 cnrefiisplem 45866 etransclem48 46319 sge0val 46403 sge0z 46412 sge00 46413 sge0sn 46416 sge0tsms 46417 ovnval2 46582 smflimsuplem1 46857 smflimsuplem2 46858 smflimsuplem4 46860 smflimsuplem7 46863 |
| Copyright terms: Public domain | W3C validator |