![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
xrltso | ⊢ < Or ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri 12219 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | xrlttr 12220 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5265 | 1 ⊢ < Or ℝ* |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5232 ℝ*cxr 10362 < clt 10363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 |
This theorem is referenced by: xrlttri2 12222 xrlttri3 12223 xrltne 12243 xmullem 12343 xmulasslem 12364 supxr 12392 supxrcl 12394 supxrun 12395 supxrmnf 12396 supxrunb1 12398 supxrunb2 12399 supxrub 12403 supxrlub 12404 infxrcl 12412 infxrlb 12413 infxrgelb 12414 xrinf0 12417 infmremnf 12422 limsupval 14546 limsupgval 14548 limsupgre 14553 ramval 16045 ramcl2lem 16046 prdsdsfn 16440 prdsdsval 16453 imasdsfn 16489 imasdsval 16490 prdsmet 22503 xpsdsval 22514 prdsbl 22624 tmsxpsval2 22672 nmoval 22847 xrge0tsms2 22966 metdsval 22978 iccpnfhmeo 23072 xrhmeo 23073 ovolval 23581 ovolf 23590 ovolctb 23598 itg2val 23836 mdegval 24164 mdegldg 24167 mdegxrf 24169 mdegcl 24170 aannenlem2 24425 nmooval 28143 nmoo0 28171 nmopval 29240 nmfnval 29260 nmop0 29370 nmfn0 29371 xrsupssd 30042 xrge0infssd 30044 infxrge0lb 30047 infxrge0glb 30048 infxrge0gelb 30049 xrsclat 30196 xrge0iifiso 30497 esumval 30624 esumnul 30626 esum0 30627 gsumesum 30637 esumsnf 30642 esumpcvgval 30656 esum2d 30671 omsfval 30872 omsf 30874 oms0 30875 omssubaddlem 30877 omssubadd 30878 mblfinlem2 33936 ovoliunnfl 33940 voliunnfl 33942 volsupnfl 33943 itg2addnclem 33949 radcnvrat 39291 infxrglb 40296 xrgtso 40301 infxr 40323 infxrunb2 40324 infxrpnf 40413 limsup0 40666 limsuppnfdlem 40673 limsupequzlem 40694 supcnvlimsup 40712 limsuplt2 40725 liminfval 40731 limsupge 40733 liminfgval 40734 liminfval2 40740 limsup10ex 40745 liminf10ex 40746 liminflelimsuplem 40747 cnrefiisplem 40795 etransclem48 41238 sge0val 41322 sge0z 41331 sge00 41332 sge0sn 41335 sge0tsms 41336 ovnval2 41501 smflimsuplem1 41768 smflimsuplem2 41769 smflimsuplem4 41771 smflimsuplem7 41774 |
Copyright terms: Public domain | W3C validator |