| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltso | ⊢ < Or ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri 13160 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | xrlttr 13161 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5603 | 1 ⊢ < Or ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5565 ℝ*cxr 11273 < clt 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 |
| This theorem is referenced by: xrlttri2 13163 xrlttri3 13164 xrltne 13184 xmullem 13285 xmulasslem 13306 supxr 13334 supxrcl 13336 supxrun 13337 supxrmnf 13338 supxrunb1 13340 supxrunb2 13341 supxrub 13345 supxrlub 13346 xrsupssd 13354 infxrcl 13355 infxrlb 13356 infxrgelb 13357 xrinf0 13360 infmremnf 13365 limsupval 15495 limsupgval 15497 limsupgre 15502 ramval 17033 ramcl2lem 17034 prdsdsfn 17484 prdsdsval 17497 imasdsfn 17533 imasdsval 17534 prdsmet 24314 xpsdsval 24325 prdsbl 24435 tmsxpsval2 24483 nmoval 24659 xrge0tsms2 24780 metdsval 24792 iccpnfhmeo 24899 xrhmeo 24900 ovolval 25431 ovolf 25440 ovolctb 25448 itg2val 25686 mdegval 26025 mdegldg 26028 mdegxrf 26030 mdegcl 26031 aannenlem2 26294 nmooval 30749 nmoo0 30777 nmopval 31842 nmfnval 31862 nmop0 31972 nmfn0 31973 xrge0infssd 32743 infxrge0lb 32746 infxrge0glb 32747 infxrge0gelb 32748 xrsclat 33008 xrge0iifiso 33971 esumval 34082 esumnul 34084 esum0 34085 gsumesum 34095 esumsnf 34100 esumpcvgval 34114 esum2d 34129 omsfval 34331 omsf 34333 oms0 34334 omssubaddlem 34336 omssubadd 34337 mblfinlem2 37687 ovoliunnfl 37691 voliunnfl 37693 volsupnfl 37694 itg2addnclem 37700 radcnvrat 44313 infxrglb 45347 xrgtso 45352 infxr 45374 infxrunb2 45375 infxrpnf 45453 limsup0 45703 limsuppnfdlem 45710 limsupequzlem 45731 supcnvlimsup 45749 limsuplt2 45762 liminfval 45768 limsupge 45770 liminfgval 45771 liminfval2 45777 limsup10ex 45782 liminf10ex 45783 liminflelimsuplem 45784 cnrefiisplem 45838 etransclem48 46291 sge0val 46375 sge0z 46384 sge00 46385 sge0sn 46388 sge0tsms 46389 ovnval2 46554 smflimsuplem1 46829 smflimsuplem2 46830 smflimsuplem4 46832 smflimsuplem7 46835 |
| Copyright terms: Public domain | W3C validator |