Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
xrltso | ⊢ < Or ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri 12802 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | xrlttr 12803 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5529 | 1 ⊢ < Or ℝ* |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5493 ℝ*cxr 10939 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: xrlttri2 12805 xrlttri3 12806 xrltne 12826 xmullem 12927 xmulasslem 12948 supxr 12976 supxrcl 12978 supxrun 12979 supxrmnf 12980 supxrunb1 12982 supxrunb2 12983 supxrub 12987 supxrlub 12988 infxrcl 12996 infxrlb 12997 infxrgelb 12998 xrinf0 13001 infmremnf 13006 limsupval 15111 limsupgval 15113 limsupgre 15118 ramval 16637 ramcl2lem 16638 prdsdsfn 17093 prdsdsval 17106 imasdsfn 17142 imasdsval 17143 prdsmet 23431 xpsdsval 23442 prdsbl 23553 tmsxpsval2 23601 nmoval 23785 xrge0tsms2 23904 metdsval 23916 iccpnfhmeo 24014 xrhmeo 24015 ovolval 24542 ovolf 24551 ovolctb 24559 itg2val 24798 mdegval 25133 mdegldg 25136 mdegxrf 25138 mdegcl 25139 aannenlem2 25394 nmooval 29026 nmoo0 29054 nmopval 30119 nmfnval 30139 nmop0 30249 nmfn0 30250 xrsupssd 30984 xrge0infssd 30986 infxrge0lb 30989 infxrge0glb 30990 infxrge0gelb 30991 xrsclat 31191 xrge0iifiso 31787 esumval 31914 esumnul 31916 esum0 31917 gsumesum 31927 esumsnf 31932 esumpcvgval 31946 esum2d 31961 omsfval 32161 omsf 32163 oms0 32164 omssubaddlem 32166 omssubadd 32167 mblfinlem2 35742 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 itg2addnclem 35755 radcnvrat 41821 infxrglb 42769 xrgtso 42774 infxr 42796 infxrunb2 42797 infxrpnf 42876 limsup0 43125 limsuppnfdlem 43132 limsupequzlem 43153 supcnvlimsup 43171 limsuplt2 43184 liminfval 43190 limsupge 43192 liminfgval 43193 liminfval2 43199 limsup10ex 43204 liminf10ex 43205 liminflelimsuplem 43206 cnrefiisplem 43260 etransclem48 43713 sge0val 43794 sge0z 43803 sge00 43804 sge0sn 43807 sge0tsms 43808 ovnval2 43973 smflimsuplem1 44240 smflimsuplem2 44241 smflimsuplem4 44243 smflimsuplem7 44246 |
Copyright terms: Public domain | W3C validator |