![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
xrltso | ⊢ < Or ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri 13201 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | xrlttr 13202 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5644 | 1 ⊢ < Or ℝ* |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5606 ℝ*cxr 11323 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: xrlttri2 13204 xrlttri3 13205 xrltne 13225 xmullem 13326 xmulasslem 13347 supxr 13375 supxrcl 13377 supxrun 13378 supxrmnf 13379 supxrunb1 13381 supxrunb2 13382 supxrub 13386 supxrlub 13387 infxrcl 13395 infxrlb 13396 infxrgelb 13397 xrinf0 13400 infmremnf 13405 limsupval 15520 limsupgval 15522 limsupgre 15527 ramval 17055 ramcl2lem 17056 prdsdsfn 17525 prdsdsval 17538 imasdsfn 17574 imasdsval 17575 prdsmet 24401 xpsdsval 24412 prdsbl 24525 tmsxpsval2 24573 nmoval 24757 xrge0tsms2 24876 metdsval 24888 iccpnfhmeo 24995 xrhmeo 24996 ovolval 25527 ovolf 25536 ovolctb 25544 itg2val 25783 mdegval 26122 mdegldg 26125 mdegxrf 26127 mdegcl 26128 aannenlem2 26389 nmooval 30795 nmoo0 30823 nmopval 31888 nmfnval 31908 nmop0 32018 nmfn0 32019 xrsupssd 32766 xrge0infssd 32768 infxrge0lb 32771 infxrge0glb 32772 infxrge0gelb 32773 xrsclat 32994 xrge0iifiso 33881 esumval 34010 esumnul 34012 esum0 34013 gsumesum 34023 esumsnf 34028 esumpcvgval 34042 esum2d 34057 omsfval 34259 omsf 34261 oms0 34262 omssubaddlem 34264 omssubadd 34265 mblfinlem2 37618 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 itg2addnclem 37631 radcnvrat 44283 infxrglb 45255 xrgtso 45260 infxr 45282 infxrunb2 45283 infxrpnf 45361 limsup0 45615 limsuppnfdlem 45622 limsupequzlem 45643 supcnvlimsup 45661 limsuplt2 45674 liminfval 45680 limsupge 45682 liminfgval 45683 liminfval2 45689 limsup10ex 45694 liminf10ex 45695 liminflelimsuplem 45696 cnrefiisplem 45750 etransclem48 46203 sge0val 46287 sge0z 46296 sge00 46297 sge0sn 46300 sge0tsms 46301 ovnval2 46466 smflimsuplem1 46741 smflimsuplem2 46742 smflimsuplem4 46744 smflimsuplem7 46747 |
Copyright terms: Public domain | W3C validator |