| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltso | ⊢ < Or ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri 13059 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | xrlttr 13060 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5568 | 1 ⊢ < Or ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5530 ℝ*cxr 11167 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 |
| This theorem is referenced by: xrlttri2 13062 xrlttri3 13063 xrltne 13083 xmullem 13184 xmulasslem 13205 supxr 13233 supxrcl 13235 supxrun 13236 supxrmnf 13237 supxrunb1 13239 supxrunb2 13240 supxrub 13244 supxrlub 13245 xrsupssd 13253 infxrcl 13254 infxrlb 13255 infxrgelb 13256 xrinf0 13259 infmremnf 13264 limsupval 15399 limsupgval 15401 limsupgre 15406 ramval 16938 ramcl2lem 16939 prdsdsfn 17387 prdsdsval 17400 imasdsfn 17436 imasdsval 17437 prdsmet 24274 xpsdsval 24285 prdsbl 24395 tmsxpsval2 24443 nmoval 24619 xrge0tsms2 24740 metdsval 24752 iccpnfhmeo 24859 xrhmeo 24860 ovolval 25390 ovolf 25399 ovolctb 25407 itg2val 25645 mdegval 25984 mdegldg 25987 mdegxrf 25989 mdegcl 25990 aannenlem2 26253 nmooval 30725 nmoo0 30753 nmopval 31818 nmfnval 31838 nmop0 31948 nmfn0 31949 xrge0infssd 32717 infxrge0lb 32720 infxrge0glb 32721 infxrge0gelb 32722 xrsclat 32978 xrge0iifiso 33901 esumval 34012 esumnul 34014 esum0 34015 gsumesum 34025 esumsnf 34030 esumpcvgval 34044 esum2d 34059 omsfval 34261 omsf 34263 oms0 34264 omssubaddlem 34266 omssubadd 34267 mblfinlem2 37637 ovoliunnfl 37641 voliunnfl 37643 volsupnfl 37644 itg2addnclem 37650 radcnvrat 44287 infxrglb 45320 xrgtso 45325 infxr 45347 infxrunb2 45348 infxrpnf 45426 limsup0 45676 limsuppnfdlem 45683 limsupequzlem 45704 supcnvlimsup 45722 limsuplt2 45735 liminfval 45741 limsupge 45743 liminfgval 45744 liminfval2 45750 limsup10ex 45755 liminf10ex 45756 liminflelimsuplem 45757 cnrefiisplem 45811 etransclem48 46264 sge0val 46348 sge0z 46357 sge00 46358 sge0sn 46361 sge0tsms 46362 ovnval2 46527 smflimsuplem1 46802 smflimsuplem2 46803 smflimsuplem4 46805 smflimsuplem7 46808 |
| Copyright terms: Public domain | W3C validator |