| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrltso | ⊢ < Or ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri 13040 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | xrlttr 13041 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5564 | 1 ⊢ < Or ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5526 ℝ*cxr 11152 < clt 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 |
| This theorem is referenced by: xrlttri2 13043 xrlttri3 13044 xrltne 13064 xmullem 13165 xmulasslem 13186 supxr 13214 supxrcl 13216 supxrun 13217 supxrmnf 13218 supxrunb1 13220 supxrunb2 13221 supxrub 13225 supxrlub 13226 xrsupssd 13234 infxrcl 13235 infxrlb 13236 infxrgelb 13237 xrinf0 13240 infmremnf 13245 limsupval 15383 limsupgval 15385 limsupgre 15390 ramval 16922 ramcl2lem 16923 prdsdsfn 17371 prdsdsval 17384 imasdsfn 17420 imasdsval 17421 prdsmet 24286 xpsdsval 24297 prdsbl 24407 tmsxpsval2 24455 nmoval 24631 xrge0tsms2 24752 metdsval 24764 iccpnfhmeo 24871 xrhmeo 24872 ovolval 25402 ovolf 25411 ovolctb 25419 itg2val 25657 mdegval 25996 mdegldg 25999 mdegxrf 26001 mdegcl 26002 aannenlem2 26265 nmooval 30745 nmoo0 30773 nmopval 31838 nmfnval 31858 nmop0 31968 nmfn0 31969 xrge0infssd 32748 infxrge0lb 32751 infxrge0glb 32752 infxrge0gelb 32753 xrsclat 32999 xrge0iifiso 33969 esumval 34080 esumnul 34082 esum0 34083 gsumesum 34093 esumsnf 34098 esumpcvgval 34112 esum2d 34127 omsfval 34328 omsf 34330 oms0 34331 omssubaddlem 34333 omssubadd 34334 mblfinlem2 37719 ovoliunnfl 37723 voliunnfl 37725 volsupnfl 37726 itg2addnclem 37732 radcnvrat 44432 infxrglb 45464 xrgtso 45469 infxr 45490 infxrunb2 45491 infxrpnf 45569 limsup0 45817 limsuppnfdlem 45824 limsupequzlem 45845 supcnvlimsup 45863 limsuplt2 45876 liminfval 45882 limsupge 45884 liminfgval 45885 liminfval2 45891 limsup10ex 45896 liminf10ex 45897 liminflelimsuplem 45898 cnrefiisplem 45952 etransclem48 46405 sge0val 46489 sge0z 46498 sge00 46499 sge0sn 46502 sge0tsms 46503 ovnval2 46668 smflimsuplem1 46943 smflimsuplem2 46944 smflimsuplem4 46946 smflimsuplem7 46949 |
| Copyright terms: Public domain | W3C validator |