MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpgrp Structured version   Visualization version   GIF version

Theorem tgpgrp 23802
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
tgpgrp (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)

Proof of Theorem tgpgrp
StepHypRef Expression
1 eqid 2730 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2730 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23801 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp1bi 1143 1 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  cfv 6542  (class class class)co 7411  TopOpenctopn 17371  Grpcgrp 18855  invgcminusg 18856   Cn ccn 22948  TopMndctmd 23794  TopGrpctgp 23795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-tgp 23797
This theorem is referenced by:  grpinvhmeo  23810  istgp2  23815  oppgtgp  23822  tgplacthmeo  23827  subgtgp  23829  subgntr  23831  opnsubg  23832  clssubg  23833  cldsubg  23835  tgpconncompeqg  23836  tgpconncomp  23837  snclseqg  23840  tgphaus  23841  tgpt1  23842  tgpt0  23843  qustgpopn  23844  qustgplem  23845  qustgphaus  23847  prdstgpd  23849  tsmsinv  23872  tsmssub  23873  tgptsmscls  23874  tsmsxplem1  23877  tsmsxplem2  23878
  Copyright terms: Public domain W3C validator