MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpgrp Structured version   Visualization version   GIF version

Theorem tgpgrp 23229
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
tgpgrp (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)

Proof of Theorem tgpgrp
StepHypRef Expression
1 eqid 2738 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2738 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23228 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp1bi 1144 1 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6433  (class class class)co 7275  TopOpenctopn 17132  Grpcgrp 18577  invgcminusg 18578   Cn ccn 22375  TopMndctmd 23221  TopGrpctgp 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-tgp 23224
This theorem is referenced by:  grpinvhmeo  23237  istgp2  23242  oppgtgp  23249  tgplacthmeo  23254  subgtgp  23256  subgntr  23258  opnsubg  23259  clssubg  23260  cldsubg  23262  tgpconncompeqg  23263  tgpconncomp  23264  snclseqg  23267  tgphaus  23268  tgpt1  23269  tgpt0  23270  qustgpopn  23271  qustgplem  23272  qustgphaus  23274  prdstgpd  23276  tsmsinv  23299  tsmssub  23300  tgptsmscls  23301  tsmsxplem1  23304  tsmsxplem2  23305
  Copyright terms: Public domain W3C validator