| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version | ||
| Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 23964 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 TopOpenctopn 17384 Grpcgrp 18865 invgcminusg 18866 Cn ccn 23111 TopMndctmd 23957 TopGrpctgp 23958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-tgp 23960 |
| This theorem is referenced by: grpinvhmeo 23973 istgp2 23978 oppgtgp 23985 tgplacthmeo 23990 subgtgp 23992 subgntr 23994 opnsubg 23995 clssubg 23996 cldsubg 23998 tgpconncompeqg 23999 tgpconncomp 24000 snclseqg 24003 tgphaus 24004 tgpt1 24005 tgpt0 24006 qustgpopn 24007 qustgplem 24008 qustgphaus 24010 prdstgpd 24012 tsmsinv 24035 tsmssub 24036 tgptsmscls 24037 tsmsxplem1 24040 tsmsxplem2 24041 |
| Copyright terms: Public domain | W3C validator |