![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version |
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
2 | eqid 2735 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | istgp 24101 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp1bi 1144 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 TopOpenctopn 17468 Grpcgrp 18964 invgcminusg 18965 Cn ccn 23248 TopMndctmd 24094 TopGrpctgp 24095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-tgp 24097 |
This theorem is referenced by: grpinvhmeo 24110 istgp2 24115 oppgtgp 24122 tgplacthmeo 24127 subgtgp 24129 subgntr 24131 opnsubg 24132 clssubg 24133 cldsubg 24135 tgpconncompeqg 24136 tgpconncomp 24137 snclseqg 24140 tgphaus 24141 tgpt1 24142 tgpt0 24143 qustgpopn 24144 qustgplem 24145 qustgphaus 24147 prdstgpd 24149 tsmsinv 24172 tsmssub 24173 tgptsmscls 24174 tsmsxplem1 24177 tsmsxplem2 24178 |
Copyright terms: Public domain | W3C validator |