Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version |
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | istgp 23136 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp1bi 1143 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 TopOpenctopn 17049 Grpcgrp 18492 invgcminusg 18493 Cn ccn 22283 TopMndctmd 23129 TopGrpctgp 23130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-tgp 23132 |
This theorem is referenced by: grpinvhmeo 23145 istgp2 23150 oppgtgp 23157 tgplacthmeo 23162 subgtgp 23164 subgntr 23166 opnsubg 23167 clssubg 23168 cldsubg 23170 tgpconncompeqg 23171 tgpconncomp 23172 snclseqg 23175 tgphaus 23176 tgpt1 23177 tgpt0 23178 qustgpopn 23179 qustgplem 23180 qustgphaus 23182 prdstgpd 23184 tsmsinv 23207 tsmssub 23208 tgptsmscls 23209 tsmsxplem1 23212 tsmsxplem2 23213 |
Copyright terms: Public domain | W3C validator |