MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpgrp Structured version   Visualization version   GIF version

Theorem tgpgrp 23941
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
tgpgrp (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)

Proof of Theorem tgpgrp
StepHypRef Expression
1 eqid 2729 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2729 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23940 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp1bi 1145 1 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6499  (class class class)co 7369  TopOpenctopn 17360  Grpcgrp 18841  invgcminusg 18842   Cn ccn 23087  TopMndctmd 23933  TopGrpctgp 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-tgp 23936
This theorem is referenced by:  grpinvhmeo  23949  istgp2  23954  oppgtgp  23961  tgplacthmeo  23966  subgtgp  23968  subgntr  23970  opnsubg  23971  clssubg  23972  cldsubg  23974  tgpconncompeqg  23975  tgpconncomp  23976  snclseqg  23979  tgphaus  23980  tgpt1  23981  tgpt0  23982  qustgpopn  23983  qustgplem  23984  qustgphaus  23986  prdstgpd  23988  tsmsinv  24011  tsmssub  24012  tgptsmscls  24013  tsmsxplem1  24016  tsmsxplem2  24017
  Copyright terms: Public domain W3C validator