| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version | ||
| Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 23992 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 TopOpenctopn 17325 Grpcgrp 18846 invgcminusg 18847 Cn ccn 23139 TopMndctmd 23985 TopGrpctgp 23986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-tgp 23988 |
| This theorem is referenced by: grpinvhmeo 24001 istgp2 24006 oppgtgp 24013 tgplacthmeo 24018 subgtgp 24020 subgntr 24022 opnsubg 24023 clssubg 24024 cldsubg 24026 tgpconncompeqg 24027 tgpconncomp 24028 snclseqg 24031 tgphaus 24032 tgpt1 24033 tgpt0 24034 qustgpopn 24035 qustgplem 24036 qustgphaus 24038 prdstgpd 24040 tsmsinv 24063 tsmssub 24064 tgptsmscls 24065 tsmsxplem1 24068 tsmsxplem2 24069 |
| Copyright terms: Public domain | W3C validator |