![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version |
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | istgp 24106 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 TopOpenctopn 17481 Grpcgrp 18973 invgcminusg 18974 Cn ccn 23253 TopMndctmd 24099 TopGrpctgp 24100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-tgp 24102 |
This theorem is referenced by: grpinvhmeo 24115 istgp2 24120 oppgtgp 24127 tgplacthmeo 24132 subgtgp 24134 subgntr 24136 opnsubg 24137 clssubg 24138 cldsubg 24140 tgpconncompeqg 24141 tgpconncomp 24142 snclseqg 24145 tgphaus 24146 tgpt1 24147 tgpt0 24148 qustgpopn 24149 qustgplem 24150 qustgphaus 24152 prdstgpd 24154 tsmsinv 24177 tsmssub 24178 tgptsmscls 24179 tsmsxplem1 24182 tsmsxplem2 24183 |
Copyright terms: Public domain | W3C validator |