| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version | ||
| Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2736 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 24020 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 TopOpenctopn 17440 Grpcgrp 18921 invgcminusg 18922 Cn ccn 23167 TopMndctmd 24013 TopGrpctgp 24014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-tgp 24016 |
| This theorem is referenced by: grpinvhmeo 24029 istgp2 24034 oppgtgp 24041 tgplacthmeo 24046 subgtgp 24048 subgntr 24050 opnsubg 24051 clssubg 24052 cldsubg 24054 tgpconncompeqg 24055 tgpconncomp 24056 snclseqg 24059 tgphaus 24060 tgpt1 24061 tgpt0 24062 qustgpopn 24063 qustgplem 24064 qustgphaus 24066 prdstgpd 24068 tsmsinv 24091 tsmssub 24092 tgptsmscls 24093 tsmsxplem1 24096 tsmsxplem2 24097 |
| Copyright terms: Public domain | W3C validator |