| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version | ||
| Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2734 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 24000 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 TopOpenctopn 17420 Grpcgrp 18901 invgcminusg 18902 Cn ccn 23147 TopMndctmd 23993 TopGrpctgp 23994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5273 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-tgp 23996 |
| This theorem is referenced by: grpinvhmeo 24009 istgp2 24014 oppgtgp 24021 tgplacthmeo 24026 subgtgp 24028 subgntr 24030 opnsubg 24031 clssubg 24032 cldsubg 24034 tgpconncompeqg 24035 tgpconncomp 24036 snclseqg 24039 tgphaus 24040 tgpt1 24041 tgpt0 24042 qustgpopn 24043 qustgplem 24044 qustgphaus 24046 prdstgpd 24048 tsmsinv 24071 tsmssub 24072 tgptsmscls 24073 tsmsxplem1 24076 tsmsxplem2 24077 |
| Copyright terms: Public domain | W3C validator |