Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version |
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
3 | 1, 2 | istgp 23228 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp1bi 1144 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 TopOpenctopn 17132 Grpcgrp 18577 invgcminusg 18578 Cn ccn 22375 TopMndctmd 23221 TopGrpctgp 23222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-tgp 23224 |
This theorem is referenced by: grpinvhmeo 23237 istgp2 23242 oppgtgp 23249 tgplacthmeo 23254 subgtgp 23256 subgntr 23258 opnsubg 23259 clssubg 23260 cldsubg 23262 tgpconncompeqg 23263 tgpconncomp 23264 snclseqg 23267 tgphaus 23268 tgpt1 23269 tgpt0 23270 qustgpopn 23271 qustgplem 23272 qustgphaus 23274 prdstgpd 23276 tsmsinv 23299 tsmssub 23300 tgptsmscls 23301 tsmsxplem1 23304 tsmsxplem2 23305 |
Copyright terms: Public domain | W3C validator |