| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpgrp | Structured version Visualization version GIF version | ||
| Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpgrp | ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 3 | 1, 2 | istgp 23940 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 TopOpenctopn 17360 Grpcgrp 18841 invgcminusg 18842 Cn ccn 23087 TopMndctmd 23933 TopGrpctgp 23934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-tgp 23936 |
| This theorem is referenced by: grpinvhmeo 23949 istgp2 23954 oppgtgp 23961 tgplacthmeo 23966 subgtgp 23968 subgntr 23970 opnsubg 23971 clssubg 23972 cldsubg 23974 tgpconncompeqg 23975 tgpconncomp 23976 snclseqg 23979 tgphaus 23980 tgpt1 23981 tgpt0 23982 qustgpopn 23983 qustgplem 23984 qustgphaus 23986 prdstgpd 23988 tsmsinv 24011 tsmssub 24012 tgptsmscls 24013 tsmsxplem1 24016 tsmsxplem2 24017 |
| Copyright terms: Public domain | W3C validator |