MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpgrp Structured version   Visualization version   GIF version

Theorem tgpgrp 23137
Description: A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
tgpgrp (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)

Proof of Theorem tgpgrp
StepHypRef Expression
1 eqid 2738 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
2 eqid 2738 . . 3 (invg𝐺) = (invg𝐺)
31, 2istgp 23136 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
43simp1bi 1143 1 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6418  (class class class)co 7255  TopOpenctopn 17049  Grpcgrp 18492  invgcminusg 18493   Cn ccn 22283  TopMndctmd 23129  TopGrpctgp 23130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-tgp 23132
This theorem is referenced by:  grpinvhmeo  23145  istgp2  23150  oppgtgp  23157  tgplacthmeo  23162  subgtgp  23164  subgntr  23166  opnsubg  23167  clssubg  23168  cldsubg  23170  tgpconncompeqg  23171  tgpconncomp  23172  snclseqg  23175  tgphaus  23176  tgpt1  23177  tgpt0  23178  qustgpopn  23179  qustgplem  23180  qustgphaus  23182  prdstgpd  23184  tsmsinv  23207  tsmssub  23208  tgptsmscls  23209  tsmsxplem1  23212  tsmsxplem2  23213
  Copyright terms: Public domain W3C validator