MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtgp Structured version   Visualization version   GIF version

Theorem symgtgp 22644
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
symgtgp.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgtgp (𝐴𝑉𝐺 ∈ TopGrp)

Proof of Theorem symgtgp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgtgp.g . . 3 𝐺 = (SymGrp‘𝐴)
21symggrp 18465 . 2 (𝐴𝑉𝐺 ∈ Grp)
3 grpmnd 18055 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
42, 3syl 17 . . 3 (𝐴𝑉𝐺 ∈ Mnd)
5 eqid 2826 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
61, 5symgtopn 18470 . . . . 5 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
7 distopon 21540 . . . . . . 7 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
8 eqid 2826 . . . . . . . 8 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
98pttoponconst 22140 . . . . . . 7 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
107, 9mpdan 683 . . . . . 6 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
111, 5elsymgbas 18445 . . . . . . . 8 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
12 f1of 6614 . . . . . . . . 9 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
13 elmapg 8414 . . . . . . . . . 10 ((𝐴𝑉𝐴𝑉) → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1413anidms 567 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1512, 14syl5ibr 247 . . . . . . . 8 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥 ∈ (𝐴m 𝐴)))
1611, 15sylbid 241 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴m 𝐴)))
1716ssrdv 3977 . . . . . 6 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝐴m 𝐴))
18 resttopon 21704 . . . . . 6 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝐺) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
1910, 17, 18syl2anc 584 . . . . 5 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
206, 19eqeltrrd 2919 . . . 4 (𝐴𝑉 → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
21 eqid 2826 . . . . 5 (TopOpen‘𝐺) = (TopOpen‘𝐺)
225, 21istps 21477 . . . 4 (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2320, 22sylibr 235 . . 3 (𝐴𝑉𝐺 ∈ TopSp)
24 eqid 2826 . . . . . . . 8 (+g𝐺) = (+g𝐺)
251, 5, 24symgplusg 18452 . . . . . . 7 (+g𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
26 eqid 2826 . . . . . . . 8 ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))
27 distop 21538 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
28 eqid 2826 . . . . . . . . . 10 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
2928xkotopon 22143 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
3027, 27, 29syl2anc 584 . . . . . . . 8 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
31 cndis 21834 . . . . . . . . . 10 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
327, 31mpdan 683 . . . . . . . . 9 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
3317, 32sseqtrrd 4012 . . . . . . . 8 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
34 disllycmp 22041 . . . . . . . . . 10 (𝐴𝑉 → 𝒫 𝐴 ∈ Locally Comp)
35 llynlly 22020 . . . . . . . . . 10 (𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
3634, 35syl 17 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
37 eqid 2826 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦))
3837xkococn 22203 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3927, 36, 27, 38syl3anc 1365 . . . . . . . 8 (𝐴𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4026, 30, 33, 26, 30, 33, 39cnmpt2res 22220 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4125, 40eqeltrid 2922 . . . . . 6 (𝐴𝑉 → (+g𝐺) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
42 xkopt 22198 . . . . . . . . . . 11 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4327, 42mpancom 684 . . . . . . . . . 10 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4443oveq1d 7165 . . . . . . . . 9 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)))
4544, 6eqtrd 2861 . . . . . . . 8 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
4645, 45oveq12d 7168 . . . . . . 7 (𝐴𝑉 → (((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4746oveq1d 7165 . . . . . 6 (𝐴𝑉 → ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) Cn (𝒫 𝐴ko 𝒫 𝐴)) = (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4841, 47eleqtrd 2920 . . . . 5 (𝐴𝑉 → (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
49 vex 3503 . . . . . . . . . . . 12 𝑥 ∈ V
50 vex 3503 . . . . . . . . . . . 12 𝑦 ∈ V
5149, 50coex 7628 . . . . . . . . . . 11 (𝑥𝑦) ∈ V
5225, 51fnmpoi 7764 . . . . . . . . . 10 (+g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺))
53 eqid 2826 . . . . . . . . . . 11 (+𝑓𝐺) = (+𝑓𝐺)
545, 24, 53plusfeq 17855 . . . . . . . . . 10 ((+g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (+𝑓𝐺) = (+g𝐺))
5552, 54ax-mp 5 . . . . . . . . 9 (+𝑓𝐺) = (+g𝐺)
5655eqcomi 2835 . . . . . . . 8 (+g𝐺) = (+𝑓𝐺)
575, 56grpplusf 18060 . . . . . . 7 (𝐺 ∈ Grp → (+g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
58 frn 6519 . . . . . . 7 ((+g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → ran (+g𝐺) ⊆ (Base‘𝐺))
592, 57, 583syl 18 . . . . . 6 (𝐴𝑉 → ran (+g𝐺) ⊆ (Base‘𝐺))
60 cnrest2 21829 . . . . . 6 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
6130, 59, 33, 60syl3anc 1365 . . . . 5 (𝐴𝑉 → ((+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
6248, 61mpbid 233 . . . 4 (𝐴𝑉 → (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))))
6345oveq2d 7166 . . . 4 (𝐴𝑉 → (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) = (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
6462, 63eleqtrd 2920 . . 3 (𝐴𝑉 → (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
6556, 21istmd 22617 . . 3 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
664, 23, 64, 65syl3anbrc 1337 . 2 (𝐴𝑉𝐺 ∈ TopMnd)
67 id 22 . . . . . 6 (𝐴𝑉𝐴𝑉)
68 fconst6g 6567 . . . . . . 7 (𝒫 𝐴 ∈ Top → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
6927, 68syl 17 . . . . . 6 (𝐴𝑉 → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
7011biimpa 477 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
71 f1ocnv 6626 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
72 f1of 6614 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
7370, 71, 723syl 18 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴𝐴)
7473ffvelrnda 6849 . . . . . . . . . 10 (((𝐴𝑉𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
7574an32s 648 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥𝑦) ∈ 𝐴)
7675fmpttd 6877 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
7776adantr 481 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
78 cnveq 5743 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑓𝑥 = 𝑓)
7978fveq1d 6671 . . . . . . . . . . . . . . 15 (𝑥 = 𝑓 → (𝑥𝑦) = (𝑓𝑦))
80 eqid 2826 . . . . . . . . . . . . . . 15 (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
81 fvex 6682 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
8279, 80, 81fvmpt 6767 . . . . . . . . . . . . . 14 (𝑓 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
8382ad2antlr 723 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
8483eleq1d 2902 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
85 eqid 2826 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦)))
8685mptiniseg 6092 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
8786elv 3505 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}
88 eqid 2826 . . . . . . . . . . . . . . . . . . 19 ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺))
8910ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
9017ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (Base‘𝐺) ⊆ (𝐴m 𝐴))
91 toponuni 21457 . . . . . . . . . . . . . . . . . . . . 21 ((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) → (𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
92 mpteq1 5151 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
9389, 91, 923syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
94 simpll 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝐴𝑉)
9569ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
961, 5elsymgbas 18445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴𝑉 → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
9796adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴𝑉𝑦𝐴) → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
9897biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴1-1-onto𝐴)
99 f1ocnv 6626 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴1-1-onto𝐴)
100 f1of 6614 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
10198, 99, 1003syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
102 simplr 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑦𝐴)
103101, 102ffvelrnd 6850 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
104 eqid 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
105104, 8ptpjcn 22154 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉 ∧ (𝐴 × {𝒫 𝐴}):𝐴⟶Top ∧ (𝑓𝑦) ∈ 𝐴) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
10694, 95, 103, 105syl3anc 1365 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
10727ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ Top)
108 fvconst2g 6962 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝒫 𝐴 ∈ Top ∧ (𝑓𝑦) ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
109107, 103, 108syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
110109oveq2d 7166 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))) = ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
111106, 110eleqtrd 2920 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
11293, 111eqeltrd 2918 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
11388, 89, 90, 112cnmpt1res 22219 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴))
1146oveq1d 7165 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
115114ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
116113, 115eleqtrd 2920 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
117 snelpwi 5333 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
118117ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑦} ∈ 𝒫 𝐴)
119 cnima 21808 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ∧ {𝑦} ∈ 𝒫 𝐴) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
120116, 118, 119syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
12187, 120eqeltrrid 2923 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
122121adantr 481 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
123 fveq1 6668 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑓 → (𝑢‘(𝑓𝑦)) = (𝑓‘(𝑓𝑦)))
124123eqeq1d 2828 . . . . . . . . . . . . . . 15 (𝑢 = 𝑓 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑓‘(𝑓𝑦)) = 𝑦))
125 simplr 765 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ (Base‘𝐺))
12698adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓:𝐴1-1-onto𝐴)
127 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑦𝐴)
128 f1ocnvfv2 7030 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝐴𝑦𝐴) → (𝑓‘(𝑓𝑦)) = 𝑦)
129126, 127, 128syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑓‘(𝑓𝑦)) = 𝑦)
130124, 125, 129elrabd 3686 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
131 ssrab2 4060 . . . . . . . . . . . . . . . . . 18 {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺)
132131a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺))
13311ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
134133biimpa 477 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
135103ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
136 f1ocnvfv 7031 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:𝐴1-1-onto𝐴 ∧ (𝑓𝑦) ∈ 𝐴) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
137134, 135, 136syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
138 simplrr 774 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝑡)
139 eleq1 2905 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑦) = (𝑓𝑦) → ((𝑥𝑦) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
140138, 139syl5ibrcom 248 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥𝑦) = (𝑓𝑦) → (𝑥𝑦) ∈ 𝑡))
141137, 140syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
142141ralrimiva 3187 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
143 fveq1 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑥 → (𝑢‘(𝑓𝑦)) = (𝑥‘(𝑓𝑦)))
144143eqeq1d 2828 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑥‘(𝑓𝑦)) = 𝑦))
145144ralrab 3689 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
146142, 145sylibr 235 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡)
147 ssrab 4053 . . . . . . . . . . . . . . . . 17 ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡} ↔ ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺) ∧ ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡))
148132, 146, 147sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡})
14980mptpreima 6091 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡}
150148, 149sseqtrrdi 4022 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡))
151 funmpt 6392 . . . . . . . . . . . . . . . 16 Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
152 fvex 6682 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦) ∈ V
153152, 80dmmpti 6491 . . . . . . . . . . . . . . . . 17 dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (Base‘𝐺)
154132, 153sseqtrrdi 4022 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)))
155 funimass3 6822 . . . . . . . . . . . . . . . 16 ((Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∧ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
156151, 154, 155sylancr 587 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
157150, 156mpbird 258 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)
158 eleq2 2906 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (𝑓𝑣𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
159 imaeq2 5924 . . . . . . . . . . . . . . . . 17 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
160159sseq1d 4002 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡 ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡))
161158, 160anbi12d 630 . . . . . . . . . . . . . . 15 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡) ↔ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)))
162161rspcev 3627 . . . . . . . . . . . . . 14 (({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺) ∧ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
163122, 130, 157, 162syl12anc 834 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
164163expr 457 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑓𝑦) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
16584, 164sylbid 241 . . . . . . . . . . 11 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
166165ralrimiva 3187 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
16720ad2antrr 722 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
1687ad2antrr 722 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ (TopOn‘𝐴))
169 simpr 485 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓 ∈ (Base‘𝐺))
170 iscnp 21780 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
171167, 168, 169, 170syl3anc 1365 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
17277, 166, 171mpbir2and 709 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
173172ralrimiva 3187 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
174 cncnp 21823 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
17520, 7, 174syl2anc 584 . . . . . . . . 9 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
176175adantr 481 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
17776, 173, 176mpbir2and 709 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
178 fvconst2g 6962 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
17927, 178sylan 580 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
180179oveq2d 7166 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
181177, 180eleqtrrd 2921 . . . . . 6 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)))
1828, 20, 67, 69, 181ptcn 22170 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))) ∈ ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
183 eqid 2826 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
1845, 183grpinvf 18095 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
1852, 184syl 17 . . . . . . 7 (𝐴𝑉 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
186185feqmptd 6732 . . . . . 6 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
1871, 5, 183symginv 18467 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → ((invg𝐺)‘𝑥) = 𝑥)
188187adantl 482 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = 𝑥)
18973feqmptd 6732 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 = (𝑦𝐴 ↦ (𝑥𝑦)))
190188, 189eqtrd 2861 . . . . . . 7 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = (𝑦𝐴 ↦ (𝑥𝑦)))
191190mpteq2dva 5158 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
192186, 191eqtrd 2861 . . . . 5 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
19343oveq2d 7166 . . . . 5 (𝐴𝑉 → ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) = ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
194182, 192, 1933eltr4d 2933 . . . 4 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)))
195 frn 6519 . . . . . 6 ((invg𝐺):(Base‘𝐺)⟶(Base‘𝐺) → ran (invg𝐺) ⊆ (Base‘𝐺))
1962, 184, 1953syl 18 . . . . 5 (𝐴𝑉 → ran (invg𝐺) ⊆ (Base‘𝐺))
197 cnrest2 21829 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (invg𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
19830, 196, 33, 197syl3anc 1365 . . . 4 (𝐴𝑉 → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
199194, 198mpbid 233 . . 3 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))))
20045oveq2d 7166 . . 3 (𝐴𝑉 → ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) = ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
201199, 200eleqtrd 2920 . 2 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
20221, 183istgp 22620 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
2032, 66, 201, 202syl3anbrc 1337 1 (𝐴𝑉𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  {crab 3147  Vcvv 3500  wss 3940  𝒫 cpw 4542  {csn 4564   cuni 4837  cmpt 5143   × cxp 5552  ccnv 5553  dom cdm 5554  ran crn 5555  cima 5557  ccom 5558  Fun wfun 6348   Fn wfn 6349  wf 6350  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7150  cmpo 7152  m cmap 8401  Basecbs 16478  +gcplusg 16560  t crest 16689  TopOpenctopn 16690  tcpt 16707  +𝑓cplusf 17844  Mndcmnd 17906  Grpcgrp 18048  invgcminusg 18049  SymGrpcsymg 18440  Topctop 21436  TopOnctopon 21453  TopSpctps 21475   Cn ccn 21767   CnP ccnp 21768  Compccmp 21929  Locally clly 22007  𝑛-Locally cnlly 22008   ×t ctx 22103  ko cxko 22104  TopMndctmd 22613  TopGrpctgp 22614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-tset 16579  df-rest 16691  df-topn 16692  df-0g 16710  df-topgen 16712  df-pt 16713  df-plusf 17846  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-minusg 18052  df-symg 18441  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-ntr 21563  df-nei 21641  df-cn 21770  df-cnp 21771  df-cmp 21930  df-lly 22009  df-nlly 22010  df-tx 22105  df-xko 22106  df-tmd 22615  df-tgp 22616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator