Step | Hyp | Ref
| Expression |
1 | | symgtgp.g |
. . 3
⊢ 𝐺 = (SymGrp‘𝐴) |
2 | 1 | symggrp 19017 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
3 | | eqid 2739 |
. . . 4
⊢
(EndoFMnd‘𝐴) =
(EndoFMnd‘𝐴) |
4 | 3 | efmndtmd 23261 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (EndoFMnd‘𝐴) ∈ TopMnd) |
5 | | eqid 2739 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
6 | 3, 1, 5 | symgsubmefmnd 19015 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴))) |
7 | 1, 5, 3 | symgressbas 18998 |
. . . 4
⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s
(Base‘𝐺)) |
8 | 7 | submtmd 23264 |
. . 3
⊢
(((EndoFMnd‘𝐴)
∈ TopMnd ∧ (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴))) → 𝐺 ∈ TopMnd) |
9 | 4, 6, 8 | syl2anc 584 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ TopMnd) |
10 | | eqid 2739 |
. . . . . 6
⊢
(∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) |
11 | 1, 5 | symgtopn 19023 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝐺)) =
(TopOpen‘𝐺)) |
12 | | distopon 22156 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
13 | 10 | pttoponconst 22757 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴))) |
14 | 12, 13 | mpdan 684 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴))) |
15 | 1, 5 | elsymgbas 18990 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
16 | | f1of 6725 |
. . . . . . . . . . 11
⊢ (𝑥:𝐴–1-1-onto→𝐴 → 𝑥:𝐴⟶𝐴) |
17 | | elmapg 8637 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐴 ↑m 𝐴) ↔ 𝑥:𝐴⟶𝐴)) |
18 | 17 | anidms 567 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (𝐴 ↑m 𝐴) ↔ 𝑥:𝐴⟶𝐴)) |
19 | 16, 18 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐴–1-1-onto→𝐴 → 𝑥 ∈ (𝐴 ↑m 𝐴))) |
20 | 15, 19 | sylbid 239 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴 ↑m 𝐴))) |
21 | 20 | ssrdv 3928 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) ⊆ (𝐴 ↑m 𝐴)) |
22 | | resttopon 22321 |
. . . . . . . 8
⊢
(((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴)) ∧ (Base‘𝐺) ⊆ (𝐴 ↑m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝐺)) ∈
(TopOn‘(Base‘𝐺))) |
23 | 14, 21, 22 | syl2anc 584 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝐺)) ∈
(TopOn‘(Base‘𝐺))) |
24 | 11, 23 | eqeltrrd 2841 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
25 | | id 22 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) |
26 | | distop 22154 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
27 | | fconst6g 6672 |
. . . . . . 7
⊢
(𝒫 𝐴 ∈
Top → (𝐴 ×
{𝒫 𝐴}):𝐴⟶Top) |
28 | 26, 27 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 × {𝒫 𝐴}):𝐴⟶Top) |
29 | 15 | biimpa 477 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴–1-1-onto→𝐴) |
30 | | f1ocnv 6737 |
. . . . . . . . . . . 12
⊢ (𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴–1-1-onto→𝐴) |
31 | | f1of 6725 |
. . . . . . . . . . . 12
⊢ (◡𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴⟶𝐴) |
32 | 29, 30, 31 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → ◡𝑥:𝐴⟶𝐴) |
33 | 32 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ 𝐴) → (◡𝑥‘𝑦) ∈ 𝐴) |
34 | 33 | an32s 649 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥‘𝑦) ∈ 𝐴) |
35 | 34 | fmpttd 6998 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)):(Base‘𝐺)⟶𝐴) |
36 | 35 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)):(Base‘𝐺)⟶𝐴) |
37 | | cnveq 5785 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑓 → ◡𝑥 = ◡𝑓) |
38 | 37 | fveq1d 6785 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑓 → (◡𝑥‘𝑦) = (◡𝑓‘𝑦)) |
39 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) = (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) |
40 | | fvex 6796 |
. . . . . . . . . . . . . . 15
⊢ (◡𝑓‘𝑦) ∈ V |
41 | 38, 39, 40 | fvmpt 6884 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))‘𝑓) = (◡𝑓‘𝑦)) |
42 | 41 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))‘𝑓) = (◡𝑓‘𝑦)) |
43 | 42 | eleq1d 2824 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))‘𝑓) ∈ 𝑡 ↔ (◡𝑓‘𝑦) ∈ 𝑡)) |
44 | | eqid 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) = (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) |
45 | 44 | mptiniseg 6147 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ V → (◡(𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) |
46 | 45 | elv 3439 |
. . . . . . . . . . . . . . . 16
⊢ (◡(𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} |
47 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) =
((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) |
48 | 14 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴))) |
49 | 21 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (Base‘𝐺) ⊆ (𝐴 ↑m 𝐴)) |
50 | | toponuni 22072 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴)) → (𝐴 ↑m 𝐴) = ∪
(∏t‘(𝐴 × {𝒫 𝐴}))) |
51 | | mpteq1 5168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ↑m 𝐴) = ∪
(∏t‘(𝐴 × {𝒫 𝐴})) → (𝑢 ∈ (𝐴 ↑m 𝐴) ↦ (𝑢‘(◡𝑓‘𝑦))) = (𝑢 ∈ ∪
(∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(◡𝑓‘𝑦)))) |
52 | 48, 50, 51 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴 ↑m 𝐴) ↦ (𝑢‘(◡𝑓‘𝑦))) = (𝑢 ∈ ∪
(∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(◡𝑓‘𝑦)))) |
53 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝐴 ∈ 𝑉) |
54 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝐴 × {𝒫 𝐴}):𝐴⟶Top) |
55 | 1, 5 | elsymgbas 18990 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴–1-1-onto→𝐴)) |
56 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴–1-1-onto→𝐴)) |
57 | 56 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴–1-1-onto→𝐴) |
58 | | f1ocnv 6737 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓:𝐴–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→𝐴) |
59 | | f1of 6725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (◡𝑓:𝐴–1-1-onto→𝐴 → ◡𝑓:𝐴⟶𝐴) |
60 | 57, 58, 59 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ◡𝑓:𝐴⟶𝐴) |
61 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑦 ∈ 𝐴) |
62 | 60, 61 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (◡𝑓‘𝑦) ∈ 𝐴) |
63 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ (∏t‘(𝐴 × {𝒫 𝐴})) = ∪
(∏t‘(𝐴 × {𝒫 𝐴})) |
64 | 63, 10 | ptpjcn 22771 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 × {𝒫 𝐴}):𝐴⟶Top ∧ (◡𝑓‘𝑦) ∈ 𝐴) → (𝑢 ∈ ∪
(∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(◡𝑓‘𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(◡𝑓‘𝑦)))) |
65 | 53, 54, 62, 64 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ ∪
(∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(◡𝑓‘𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(◡𝑓‘𝑦)))) |
66 | 26 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ Top) |
67 | | fvconst2g 7086 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((𝒫 𝐴 ∈
Top ∧ (◡𝑓‘𝑦) ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘(◡𝑓‘𝑦)) = 𝒫 𝐴) |
68 | 66, 62, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝐴 × {𝒫 𝐴})‘(◡𝑓‘𝑦)) = 𝒫 𝐴) |
69 | 68 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(◡𝑓‘𝑦))) = ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴)) |
70 | 65, 69 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ ∪
(∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(◡𝑓‘𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴)) |
71 | 52, 70 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴 ↑m 𝐴) ↦ (𝑢‘(◡𝑓‘𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴)) |
72 | 47, 48, 49, 71 | cnmpt1res 22836 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) ∈ (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝐺)) Cn
𝒫 𝐴)) |
73 | 11 | oveq1d 7299 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ 𝑉 → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝐺)) Cn
𝒫 𝐴) =
((TopOpen‘𝐺) Cn
𝒫 𝐴)) |
74 | 73 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝐺)) Cn
𝒫 𝐴) =
((TopOpen‘𝐺) Cn
𝒫 𝐴)) |
75 | 72, 74 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴)) |
76 | | snelpwi 5361 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) |
77 | 76 | ad2antlr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑦} ∈ 𝒫 𝐴) |
78 | | cnima 22425 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ∧ {𝑦} ∈ 𝒫 𝐴) → (◡(𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺)) |
79 | 75, 77, 78 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (◡(𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(◡𝑓‘𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺)) |
80 | 46, 79 | eqeltrrid 2845 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ∈ (TopOpen‘𝐺)) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ∈ (TopOpen‘𝐺)) |
82 | | fveq1 6782 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑓 → (𝑢‘(◡𝑓‘𝑦)) = (𝑓‘(◡𝑓‘𝑦))) |
83 | 82 | eqeq1d 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑓 → ((𝑢‘(◡𝑓‘𝑦)) = 𝑦 ↔ (𝑓‘(◡𝑓‘𝑦)) = 𝑦)) |
84 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → 𝑓 ∈ (Base‘𝐺)) |
85 | 57 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → 𝑓:𝐴–1-1-onto→𝐴) |
86 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → 𝑦 ∈ 𝐴) |
87 | | f1ocnvfv2 7158 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐴–1-1-onto→𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑓‘(◡𝑓‘𝑦)) = 𝑦) |
88 | 85, 86, 87 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → (𝑓‘(◡𝑓‘𝑦)) = 𝑦) |
89 | 83, 84, 88 | elrabd 3627 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → 𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) |
90 | | ssrab2 4014 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ (Base‘𝐺) |
91 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ (Base‘𝐺)) |
92 | 15 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
93 | 92 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴–1-1-onto→𝐴) |
94 | 62 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑓‘𝑦) ∈ 𝐴) |
95 | | f1ocnvfv 7159 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥:𝐴–1-1-onto→𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝐴) → ((𝑥‘(◡𝑓‘𝑦)) = 𝑦 → (◡𝑥‘𝑦) = (◡𝑓‘𝑦))) |
96 | 93, 94, 95 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(◡𝑓‘𝑦)) = 𝑦 → (◡𝑥‘𝑦) = (◡𝑓‘𝑦))) |
97 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑓‘𝑦) ∈ 𝑡) |
98 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝑥‘𝑦) = (◡𝑓‘𝑦) → ((◡𝑥‘𝑦) ∈ 𝑡 ↔ (◡𝑓‘𝑦) ∈ 𝑡)) |
99 | 97, 98 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((◡𝑥‘𝑦) = (◡𝑓‘𝑦) → (◡𝑥‘𝑦) ∈ 𝑡)) |
100 | 96, 99 | syld 47 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(◡𝑓‘𝑦)) = 𝑦 → (◡𝑥‘𝑦) ∈ 𝑡)) |
101 | 100 | ralrimiva 3104 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(◡𝑓‘𝑦)) = 𝑦 → (◡𝑥‘𝑦) ∈ 𝑡)) |
102 | | fveq1 6782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = 𝑥 → (𝑢‘(◡𝑓‘𝑦)) = (𝑥‘(◡𝑓‘𝑦))) |
103 | 102 | eqeq1d 2741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑥 → ((𝑢‘(◡𝑓‘𝑦)) = 𝑦 ↔ (𝑥‘(◡𝑓‘𝑦)) = 𝑦)) |
104 | 103 | ralrab 3631 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
{𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} (◡𝑥‘𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(◡𝑓‘𝑦)) = 𝑦 → (◡𝑥‘𝑦) ∈ 𝑡)) |
105 | 101, 104 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} (◡𝑥‘𝑦) ∈ 𝑡) |
106 | | ssrab 4007 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (◡𝑥‘𝑦) ∈ 𝑡} ↔ ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ (Base‘𝐺) ∧ ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} (◡𝑥‘𝑦) ∈ 𝑡)) |
107 | 91, 105, 106 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (◡𝑥‘𝑦) ∈ 𝑡}) |
108 | 39 | mptpreima 6146 |
. . . . . . . . . . . . . . . 16
⊢ (◡(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑡) = {𝑥 ∈ (Base‘𝐺) ∣ (◡𝑥‘𝑦) ∈ 𝑡} |
109 | 107, 108 | sseqtrrdi 3973 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ (◡(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑡)) |
110 | | funmpt 6479 |
. . . . . . . . . . . . . . . 16
⊢ Fun
(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) |
111 | | fvex 6796 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑥‘𝑦) ∈ V |
112 | 111, 39 | dmmpti 6586 |
. . . . . . . . . . . . . . . . 17
⊢ dom
(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) = (Base‘𝐺) |
113 | 91, 112 | sseqtrrdi 3973 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))) |
114 | | funimass3 6940 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∧ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))) → (((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ (◡(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑡))) |
115 | 110, 113,
114 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → (((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ⊆ (◡(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑡))) |
116 | 109, 115 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) ⊆ 𝑡) |
117 | | eleq2 2828 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} → (𝑓 ∈ 𝑣 ↔ 𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦})) |
118 | | imaeq2 5968 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) = ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦})) |
119 | 118 | sseq1d 3953 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} → (((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡 ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) ⊆ 𝑡)) |
120 | 117, 119 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} → ((𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡) ↔ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) ⊆ 𝑡))) |
121 | 120 | rspcev 3562 |
. . . . . . . . . . . . . 14
⊢ (({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ∈ (TopOpen‘𝐺) ∧ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(◡𝑓‘𝑦)) = 𝑦}) ⊆ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡)) |
122 | 81, 89, 116, 121 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (◡𝑓‘𝑦) ∈ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡)) |
123 | 122 | expr 457 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((◡𝑓‘𝑦) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡))) |
124 | 43, 123 | sylbid 239 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡))) |
125 | 124 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡))) |
126 | 24 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
127 | 12 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
128 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓 ∈ (Base‘𝐺)) |
129 | | iscnp 22397 |
. . . . . . . . . . 11
⊢
(((TopOpen‘𝐺)
∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡))))) |
130 | 126, 127,
128, 129 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓 ∈ 𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) “ 𝑣) ⊆ 𝑡))))) |
131 | 36, 125, 130 | mpbir2and 710 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓)) |
132 | 131 | ralrimiva 3104 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓)) |
133 | | cncnp 22440 |
. . . . . . . . . 10
⊢
(((TopOpen‘𝐺)
∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓)))) |
134 | 24, 12, 133 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓)))) |
135 | 134 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓)))) |
136 | 35, 132, 135 | mpbir2and 710 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴)) |
137 | | fvconst2g 7086 |
. . . . . . . . 9
⊢
((𝒫 𝐴 ∈
Top ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴) |
138 | 26, 137 | sylan 580 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴) |
139 | 138 | oveq2d 7300 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)) = ((TopOpen‘𝐺) Cn 𝒫 𝐴)) |
140 | 136, 139 | eleqtrrd 2843 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (◡𝑥‘𝑦)) ∈ ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦))) |
141 | 10, 24, 25, 28, 140 | ptcn 22787 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ (𝑦 ∈ 𝐴 ↦ (◡𝑥‘𝑦))) ∈ ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴})))) |
142 | | eqid 2739 |
. . . . . . . . 9
⊢
(invg‘𝐺) = (invg‘𝐺) |
143 | 5, 142 | grpinvf 18635 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(invg‘𝐺):(Base‘𝐺)⟶(Base‘𝐺)) |
144 | 2, 143 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (invg‘𝐺):(Base‘𝐺)⟶(Base‘𝐺)) |
145 | 144 | feqmptd 6846 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (invg‘𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑥))) |
146 | 1, 5, 142 | symginv 19019 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Base‘𝐺) →
((invg‘𝐺)‘𝑥) = ◡𝑥) |
147 | 146 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑥) = ◡𝑥) |
148 | 32 | feqmptd 6846 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → ◡𝑥 = (𝑦 ∈ 𝐴 ↦ (◡𝑥‘𝑦))) |
149 | 147, 148 | eqtrd 2779 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑥) = (𝑦 ∈ 𝐴 ↦ (◡𝑥‘𝑦))) |
150 | 149 | mpteq2dva 5175 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ ((invg‘𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦 ∈ 𝐴 ↦ (◡𝑥‘𝑦)))) |
151 | 145, 150 | eqtrd 2779 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (invg‘𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦 ∈ 𝐴 ↦ (◡𝑥‘𝑦)))) |
152 | | xkopt 22815 |
. . . . . . 7
⊢
((𝒫 𝐴 ∈
Top ∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 ↑ko 𝒫
𝐴) =
(∏t‘(𝐴 × {𝒫 𝐴}))) |
153 | 26, 152 | mpancom 685 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ↑ko 𝒫 𝐴) =
(∏t‘(𝐴 × {𝒫 𝐴}))) |
154 | 153 | oveq2d 7300 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((TopOpen‘𝐺) Cn (𝒫 𝐴 ↑ko 𝒫 𝐴)) = ((TopOpen‘𝐺) Cn
(∏t‘(𝐴 × {𝒫 𝐴})))) |
155 | 141, 151,
154 | 3eltr4d 2855 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴 ↑ko 𝒫
𝐴))) |
156 | | eqid 2739 |
. . . . . . 7
⊢
(𝒫 𝐴
↑ko 𝒫 𝐴) = (𝒫 𝐴 ↑ko 𝒫 𝐴) |
157 | 156 | xkotopon 22760 |
. . . . . 6
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐴
∈ Top) → (𝒫 𝐴 ↑ko 𝒫 𝐴) ∈ (TopOn‘(𝒫
𝐴 Cn 𝒫 𝐴))) |
158 | 26, 26, 157 | syl2anc 584 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ↑ko 𝒫 𝐴) ∈ (TopOn‘(𝒫
𝐴 Cn 𝒫 𝐴))) |
159 | | frn 6616 |
. . . . . 6
⊢
((invg‘𝐺):(Base‘𝐺)⟶(Base‘𝐺) → ran (invg‘𝐺) ⊆ (Base‘𝐺)) |
160 | 2, 143, 159 | 3syl 18 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ran (invg‘𝐺) ⊆ (Base‘𝐺)) |
161 | | cndis 22451 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴 ↑m 𝐴)) |
162 | 12, 161 | mpdan 684 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴 ↑m 𝐴)) |
163 | 21, 162 | sseqtrrd 3963 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) |
164 | | cnrest2 22446 |
. . . . 5
⊢
(((𝒫 𝐴
↑ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (invg‘𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴 ↑ko 𝒫
𝐴)) ↔
(invg‘𝐺)
∈ ((TopOpen‘𝐺)
Cn ((𝒫 𝐴
↑ko 𝒫 𝐴) ↾t (Base‘𝐺))))) |
165 | 158, 160,
163, 164 | syl3anc 1370 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴 ↑ko 𝒫
𝐴)) ↔
(invg‘𝐺)
∈ ((TopOpen‘𝐺)
Cn ((𝒫 𝐴
↑ko 𝒫 𝐴) ↾t (Base‘𝐺))))) |
166 | 155, 165 | mpbid 231 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴 ↑ko 𝒫
𝐴) ↾t
(Base‘𝐺)))) |
167 | 153 | oveq1d 7299 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝐺)) =
((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺))) |
168 | 167, 11 | eqtrd 2779 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝐺)) =
(TopOpen‘𝐺)) |
169 | 168 | oveq2d 7300 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((TopOpen‘𝐺) Cn ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝐺))) =
((TopOpen‘𝐺) Cn
(TopOpen‘𝐺))) |
170 | 166, 169 | eleqtrd 2842 |
. 2
⊢ (𝐴 ∈ 𝑉 → (invg‘𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))) |
171 | | eqid 2739 |
. . 3
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
172 | 171, 142 | istgp 23237 |
. 2
⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧
(invg‘𝐺)
∈ ((TopOpen‘𝐺)
Cn (TopOpen‘𝐺)))) |
173 | 2, 9, 170, 172 | syl3anbrc 1342 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp) |