MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtgp Structured version   Visualization version   GIF version

Theorem symgtgp 23993
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof shortened by AV, 30-Mar-2024.)
Hypothesis
Ref Expression
symgtgp.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgtgp (𝐴𝑉𝐺 ∈ TopGrp)

Proof of Theorem symgtgp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgtgp.g . . 3 𝐺 = (SymGrp‘𝐴)
21symggrp 19330 . 2 (𝐴𝑉𝐺 ∈ Grp)
3 eqid 2729 . . . 4 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
43efmndtmd 23988 . . 3 (𝐴𝑉 → (EndoFMnd‘𝐴) ∈ TopMnd)
5 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
63, 1, 5symgsubmefmnd 19328 . . 3 (𝐴𝑉 → (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴)))
71, 5, 3symgressbas 19312 . . . 4 𝐺 = ((EndoFMnd‘𝐴) ↾s (Base‘𝐺))
87submtmd 23991 . . 3 (((EndoFMnd‘𝐴) ∈ TopMnd ∧ (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴))) → 𝐺 ∈ TopMnd)
94, 6, 8syl2anc 584 . 2 (𝐴𝑉𝐺 ∈ TopMnd)
10 eqid 2729 . . . . . 6 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
111, 5symgtopn 19336 . . . . . . 7 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
12 distopon 22884 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
1310pttoponconst 23484 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
1412, 13mpdan 687 . . . . . . . 8 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
151, 5elsymgbas 19304 . . . . . . . . . 10 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
16 f1of 6800 . . . . . . . . . . 11 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
17 elmapg 8812 . . . . . . . . . . . 12 ((𝐴𝑉𝐴𝑉) → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1817anidms 566 . . . . . . . . . . 11 (𝐴𝑉 → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1916, 18imbitrrid 246 . . . . . . . . . 10 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥 ∈ (𝐴m 𝐴)))
2015, 19sylbid 240 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴m 𝐴)))
2120ssrdv 3952 . . . . . . . 8 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝐴m 𝐴))
22 resttopon 23048 . . . . . . . 8 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝐺) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
2314, 21, 22syl2anc 584 . . . . . . 7 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
2411, 23eqeltrrd 2829 . . . . . 6 (𝐴𝑉 → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
25 id 22 . . . . . 6 (𝐴𝑉𝐴𝑉)
26 distop 22882 . . . . . . 7 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
27 fconst6g 6749 . . . . . . 7 (𝒫 𝐴 ∈ Top → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
2826, 27syl 17 . . . . . 6 (𝐴𝑉 → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
2915biimpa 476 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
30 f1ocnv 6812 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
31 f1of 6800 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
3229, 30, 313syl 18 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴𝐴)
3332ffvelcdmda 7056 . . . . . . . . . 10 (((𝐴𝑉𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
3433an32s 652 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥𝑦) ∈ 𝐴)
3534fmpttd 7087 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
3635adantr 480 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
37 cnveq 5837 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑓𝑥 = 𝑓)
3837fveq1d 6860 . . . . . . . . . . . . . . 15 (𝑥 = 𝑓 → (𝑥𝑦) = (𝑓𝑦))
39 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
40 fvex 6871 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
4138, 39, 40fvmpt 6968 . . . . . . . . . . . . . 14 (𝑓 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
4241ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
4342eleq1d 2813 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
44 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦)))
4544mptiniseg 6212 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
4645elv 3452 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}
47 eqid 2729 . . . . . . . . . . . . . . . . . . 19 ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺))
4814ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
4921ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (Base‘𝐺) ⊆ (𝐴m 𝐴))
50 toponuni 22801 . . . . . . . . . . . . . . . . . . . . 21 ((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) → (𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
51 mpteq1 5196 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
5248, 50, 513syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
53 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝐴𝑉)
5428ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
551, 5elsymgbas 19304 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴𝑉 → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
5655adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴𝑉𝑦𝐴) → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
5756biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴1-1-onto𝐴)
58 f1ocnv 6812 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴1-1-onto𝐴)
59 f1of 6800 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
6057, 58, 593syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
61 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑦𝐴)
6260, 61ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
63 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
6463, 10ptpjcn 23498 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉 ∧ (𝐴 × {𝒫 𝐴}):𝐴⟶Top ∧ (𝑓𝑦) ∈ 𝐴) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
6553, 54, 62, 64syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
6626ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ Top)
67 fvconst2g 7176 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝒫 𝐴 ∈ Top ∧ (𝑓𝑦) ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
6866, 62, 67syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
6968oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))) = ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7065, 69eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7152, 70eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7247, 48, 49, 71cnmpt1res 23563 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴))
7311oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
7473ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
7572, 74eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
76 snelpwi 5403 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
7776ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑦} ∈ 𝒫 𝐴)
78 cnima 23152 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ∧ {𝑦} ∈ 𝒫 𝐴) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
7975, 77, 78syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
8046, 79eqeltrrid 2833 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
8180adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
82 fveq1 6857 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑓 → (𝑢‘(𝑓𝑦)) = (𝑓‘(𝑓𝑦)))
8382eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑢 = 𝑓 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑓‘(𝑓𝑦)) = 𝑦))
84 simplr 768 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ (Base‘𝐺))
8557adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓:𝐴1-1-onto𝐴)
86 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑦𝐴)
87 f1ocnvfv2 7252 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝐴𝑦𝐴) → (𝑓‘(𝑓𝑦)) = 𝑦)
8885, 86, 87syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑓‘(𝑓𝑦)) = 𝑦)
8983, 84, 88elrabd 3661 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
90 ssrab2 4043 . . . . . . . . . . . . . . . . . 18 {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺)
9190a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺))
9215ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
9392biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
9462ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
95 f1ocnvfv 7253 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:𝐴1-1-onto𝐴 ∧ (𝑓𝑦) ∈ 𝐴) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
9693, 94, 95syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
97 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝑡)
98 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑦) = (𝑓𝑦) → ((𝑥𝑦) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
9997, 98syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥𝑦) = (𝑓𝑦) → (𝑥𝑦) ∈ 𝑡))
10096, 99syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
101100ralrimiva 3125 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
102 fveq1 6857 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑥 → (𝑢‘(𝑓𝑦)) = (𝑥‘(𝑓𝑦)))
103102eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑥‘(𝑓𝑦)) = 𝑦))
104103ralrab 3665 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
105101, 104sylibr 234 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡)
106 ssrab 4036 . . . . . . . . . . . . . . . . 17 ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡} ↔ ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺) ∧ ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡))
10791, 105, 106sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡})
10839mptpreima 6211 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡}
109107, 108sseqtrrdi 3988 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡))
110 funmpt 6554 . . . . . . . . . . . . . . . 16 Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
111 fvex 6871 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦) ∈ V
112111, 39dmmpti 6662 . . . . . . . . . . . . . . . . 17 dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (Base‘𝐺)
11391, 112sseqtrrdi 3988 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)))
114 funimass3 7026 . . . . . . . . . . . . . . . 16 ((Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∧ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
115110, 113, 114sylancr 587 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
116109, 115mpbird 257 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)
117 eleq2 2817 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (𝑓𝑣𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
118 imaeq2 6027 . . . . . . . . . . . . . . . . 17 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
119118sseq1d 3978 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡 ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡))
120117, 119anbi12d 632 . . . . . . . . . . . . . . 15 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡) ↔ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)))
121120rspcev 3588 . . . . . . . . . . . . . 14 (({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺) ∧ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
12281, 89, 116, 121syl12anc 836 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
123122expr 456 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑓𝑦) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
12443, 123sylbid 240 . . . . . . . . . . 11 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
125124ralrimiva 3125 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
12624ad2antrr 726 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
12712ad2antrr 726 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ (TopOn‘𝐴))
128 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓 ∈ (Base‘𝐺))
129 iscnp 23124 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
130126, 127, 128, 129syl3anc 1373 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
13136, 125, 130mpbir2and 713 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
132131ralrimiva 3125 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
133 cncnp 23167 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
13424, 12, 133syl2anc 584 . . . . . . . . 9 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
135134adantr 480 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
13635, 132, 135mpbir2and 713 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
137 fvconst2g 7176 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
13826, 137sylan 580 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
139138oveq2d 7403 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
140136, 139eleqtrrd 2831 . . . . . 6 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)))
14110, 24, 25, 28, 140ptcn 23514 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))) ∈ ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
142 eqid 2729 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
1435, 142grpinvf 18918 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
1442, 143syl 17 . . . . . . 7 (𝐴𝑉 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
145144feqmptd 6929 . . . . . 6 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
1461, 5, 142symginv 19332 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → ((invg𝐺)‘𝑥) = 𝑥)
147146adantl 481 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = 𝑥)
14832feqmptd 6929 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 = (𝑦𝐴 ↦ (𝑥𝑦)))
149147, 148eqtrd 2764 . . . . . . 7 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = (𝑦𝐴 ↦ (𝑥𝑦)))
150149mpteq2dva 5200 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
151145, 150eqtrd 2764 . . . . 5 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
152 xkopt 23542 . . . . . . 7 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
15326, 152mpancom 688 . . . . . 6 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
154153oveq2d 7403 . . . . 5 (𝐴𝑉 → ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) = ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
155141, 151, 1543eltr4d 2843 . . . 4 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)))
156 eqid 2729 . . . . . . 7 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
157156xkotopon 23487 . . . . . 6 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
15826, 26, 157syl2anc 584 . . . . 5 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
159 frn 6695 . . . . . 6 ((invg𝐺):(Base‘𝐺)⟶(Base‘𝐺) → ran (invg𝐺) ⊆ (Base‘𝐺))
1602, 143, 1593syl 18 . . . . 5 (𝐴𝑉 → ran (invg𝐺) ⊆ (Base‘𝐺))
161 cndis 23178 . . . . . . 7 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
16212, 161mpdan 687 . . . . . 6 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
16321, 162sseqtrrd 3984 . . . . 5 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
164 cnrest2 23173 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (invg𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
165158, 160, 163, 164syl3anc 1373 . . . 4 (𝐴𝑉 → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
166155, 165mpbid 232 . . 3 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))))
167153oveq1d 7402 . . . . 5 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)))
168167, 11eqtrd 2764 . . . 4 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
169168oveq2d 7403 . . 3 (𝐴𝑉 → ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) = ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
170166, 169eleqtrd 2830 . 2 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
171 eqid 2729 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
172171, 142istgp 23964 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
1732, 9, 170, 172syl3anbrc 1344 1 (𝐴𝑉𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  m cmap 8799  Basecbs 17179  t crest 17383  TopOpenctopn 17384  tcpt 17401  SubMndcsubmnd 18709  EndoFMndcefmnd 18795  Grpcgrp 18865  invgcminusg 18866  SymGrpcsymg 19299  Topctop 22780  TopOnctopon 22797   Cn ccn 23111   CnP ccnp 23112  ko cxko 23448  TopMndctmd 23957  TopGrpctgp 23958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-rest 17385  df-topn 17386  df-0g 17404  df-topgen 17406  df-pt 17407  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-symg 19300  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-ntr 22907  df-nei 22985  df-cn 23114  df-cnp 23115  df-cmp 23274  df-lly 23353  df-nlly 23354  df-tx 23449  df-xko 23450  df-tmd 23959  df-tgp 23960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator