MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtgp Structured version   Visualization version   GIF version

Theorem symgtgp 23991
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof shortened by AV, 30-Mar-2024.)
Hypothesis
Ref Expression
symgtgp.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgtgp (𝐴𝑉𝐺 ∈ TopGrp)

Proof of Theorem symgtgp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgtgp.g . . 3 𝐺 = (SymGrp‘𝐴)
21symggrp 19279 . 2 (𝐴𝑉𝐺 ∈ Grp)
3 eqid 2729 . . . 4 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
43efmndtmd 23986 . . 3 (𝐴𝑉 → (EndoFMnd‘𝐴) ∈ TopMnd)
5 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
63, 1, 5symgsubmefmnd 19277 . . 3 (𝐴𝑉 → (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴)))
71, 5, 3symgressbas 19261 . . . 4 𝐺 = ((EndoFMnd‘𝐴) ↾s (Base‘𝐺))
87submtmd 23989 . . 3 (((EndoFMnd‘𝐴) ∈ TopMnd ∧ (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴))) → 𝐺 ∈ TopMnd)
94, 6, 8syl2anc 584 . 2 (𝐴𝑉𝐺 ∈ TopMnd)
10 eqid 2729 . . . . . 6 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
111, 5symgtopn 19285 . . . . . . 7 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
12 distopon 22882 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
1310pttoponconst 23482 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
1412, 13mpdan 687 . . . . . . . 8 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
151, 5elsymgbas 19253 . . . . . . . . . 10 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
16 f1of 6764 . . . . . . . . . . 11 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
17 elmapg 8766 . . . . . . . . . . . 12 ((𝐴𝑉𝐴𝑉) → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1817anidms 566 . . . . . . . . . . 11 (𝐴𝑉 → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1916, 18imbitrrid 246 . . . . . . . . . 10 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥 ∈ (𝐴m 𝐴)))
2015, 19sylbid 240 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴m 𝐴)))
2120ssrdv 3941 . . . . . . . 8 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝐴m 𝐴))
22 resttopon 23046 . . . . . . . 8 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝐺) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
2314, 21, 22syl2anc 584 . . . . . . 7 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
2411, 23eqeltrrd 2829 . . . . . 6 (𝐴𝑉 → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
25 id 22 . . . . . 6 (𝐴𝑉𝐴𝑉)
26 distop 22880 . . . . . . 7 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
27 fconst6g 6713 . . . . . . 7 (𝒫 𝐴 ∈ Top → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
2826, 27syl 17 . . . . . 6 (𝐴𝑉 → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
2915biimpa 476 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
30 f1ocnv 6776 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
31 f1of 6764 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
3229, 30, 313syl 18 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴𝐴)
3332ffvelcdmda 7018 . . . . . . . . . 10 (((𝐴𝑉𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
3433an32s 652 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥𝑦) ∈ 𝐴)
3534fmpttd 7049 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
3635adantr 480 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
37 cnveq 5816 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑓𝑥 = 𝑓)
3837fveq1d 6824 . . . . . . . . . . . . . . 15 (𝑥 = 𝑓 → (𝑥𝑦) = (𝑓𝑦))
39 eqid 2729 . . . . . . . . . . . . . . 15 (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
40 fvex 6835 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
4138, 39, 40fvmpt 6930 . . . . . . . . . . . . . 14 (𝑓 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
4241ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
4342eleq1d 2813 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
44 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦)))
4544mptiniseg 6188 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
4645elv 3441 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}
47 eqid 2729 . . . . . . . . . . . . . . . . . . 19 ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺))
4814ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
4921ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (Base‘𝐺) ⊆ (𝐴m 𝐴))
50 toponuni 22799 . . . . . . . . . . . . . . . . . . . . 21 ((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) → (𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
51 mpteq1 5181 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
5248, 50, 513syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
53 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝐴𝑉)
5428ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
551, 5elsymgbas 19253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴𝑉 → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
5655adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴𝑉𝑦𝐴) → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
5756biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴1-1-onto𝐴)
58 f1ocnv 6776 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴1-1-onto𝐴)
59 f1of 6764 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
6057, 58, 593syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
61 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑦𝐴)
6260, 61ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
63 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
6463, 10ptpjcn 23496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉 ∧ (𝐴 × {𝒫 𝐴}):𝐴⟶Top ∧ (𝑓𝑦) ∈ 𝐴) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
6553, 54, 62, 64syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
6626ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ Top)
67 fvconst2g 7138 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝒫 𝐴 ∈ Top ∧ (𝑓𝑦) ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
6866, 62, 67syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
6968oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))) = ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7065, 69eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7152, 70eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7247, 48, 49, 71cnmpt1res 23561 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴))
7311oveq1d 7364 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
7473ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
7572, 74eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
76 snelpwi 5386 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
7776ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑦} ∈ 𝒫 𝐴)
78 cnima 23150 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ∧ {𝑦} ∈ 𝒫 𝐴) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
7975, 77, 78syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
8046, 79eqeltrrid 2833 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
8180adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
82 fveq1 6821 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑓 → (𝑢‘(𝑓𝑦)) = (𝑓‘(𝑓𝑦)))
8382eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑢 = 𝑓 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑓‘(𝑓𝑦)) = 𝑦))
84 simplr 768 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ (Base‘𝐺))
8557adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓:𝐴1-1-onto𝐴)
86 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑦𝐴)
87 f1ocnvfv2 7214 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝐴𝑦𝐴) → (𝑓‘(𝑓𝑦)) = 𝑦)
8885, 86, 87syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑓‘(𝑓𝑦)) = 𝑦)
8983, 84, 88elrabd 3650 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
90 ssrab2 4031 . . . . . . . . . . . . . . . . . 18 {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺)
9190a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺))
9215ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
9392biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
9462ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
95 f1ocnvfv 7215 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:𝐴1-1-onto𝐴 ∧ (𝑓𝑦) ∈ 𝐴) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
9693, 94, 95syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
97 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝑡)
98 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑦) = (𝑓𝑦) → ((𝑥𝑦) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
9997, 98syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥𝑦) = (𝑓𝑦) → (𝑥𝑦) ∈ 𝑡))
10096, 99syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
101100ralrimiva 3121 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
102 fveq1 6821 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑥 → (𝑢‘(𝑓𝑦)) = (𝑥‘(𝑓𝑦)))
103102eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑥‘(𝑓𝑦)) = 𝑦))
104103ralrab 3654 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
105101, 104sylibr 234 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡)
106 ssrab 4024 . . . . . . . . . . . . . . . . 17 ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡} ↔ ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺) ∧ ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡))
10791, 105, 106sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡})
10839mptpreima 6187 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡}
109107, 108sseqtrrdi 3977 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡))
110 funmpt 6520 . . . . . . . . . . . . . . . 16 Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
111 fvex 6835 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦) ∈ V
112111, 39dmmpti 6626 . . . . . . . . . . . . . . . . 17 dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (Base‘𝐺)
11391, 112sseqtrrdi 3977 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)))
114 funimass3 6988 . . . . . . . . . . . . . . . 16 ((Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∧ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
115110, 113, 114sylancr 587 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
116109, 115mpbird 257 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)
117 eleq2 2817 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (𝑓𝑣𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
118 imaeq2 6007 . . . . . . . . . . . . . . . . 17 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
119118sseq1d 3967 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡 ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡))
120117, 119anbi12d 632 . . . . . . . . . . . . . . 15 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡) ↔ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)))
121120rspcev 3577 . . . . . . . . . . . . . 14 (({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺) ∧ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
12281, 89, 116, 121syl12anc 836 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
123122expr 456 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑓𝑦) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
12443, 123sylbid 240 . . . . . . . . . . 11 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
125124ralrimiva 3121 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
12624ad2antrr 726 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
12712ad2antrr 726 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ (TopOn‘𝐴))
128 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓 ∈ (Base‘𝐺))
129 iscnp 23122 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
130126, 127, 128, 129syl3anc 1373 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
13136, 125, 130mpbir2and 713 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
132131ralrimiva 3121 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
133 cncnp 23165 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
13424, 12, 133syl2anc 584 . . . . . . . . 9 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
135134adantr 480 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
13635, 132, 135mpbir2and 713 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
137 fvconst2g 7138 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
13826, 137sylan 580 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
139138oveq2d 7365 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
140136, 139eleqtrrd 2831 . . . . . 6 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)))
14110, 24, 25, 28, 140ptcn 23512 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))) ∈ ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
142 eqid 2729 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
1435, 142grpinvf 18865 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
1442, 143syl 17 . . . . . . 7 (𝐴𝑉 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
145144feqmptd 6891 . . . . . 6 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
1461, 5, 142symginv 19281 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → ((invg𝐺)‘𝑥) = 𝑥)
147146adantl 481 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = 𝑥)
14832feqmptd 6891 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 = (𝑦𝐴 ↦ (𝑥𝑦)))
149147, 148eqtrd 2764 . . . . . . 7 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = (𝑦𝐴 ↦ (𝑥𝑦)))
150149mpteq2dva 5185 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
151145, 150eqtrd 2764 . . . . 5 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
152 xkopt 23540 . . . . . . 7 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
15326, 152mpancom 688 . . . . . 6 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
154153oveq2d 7365 . . . . 5 (𝐴𝑉 → ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) = ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
155141, 151, 1543eltr4d 2843 . . . 4 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)))
156 eqid 2729 . . . . . . 7 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
157156xkotopon 23485 . . . . . 6 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
15826, 26, 157syl2anc 584 . . . . 5 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
159 frn 6659 . . . . . 6 ((invg𝐺):(Base‘𝐺)⟶(Base‘𝐺) → ran (invg𝐺) ⊆ (Base‘𝐺))
1602, 143, 1593syl 18 . . . . 5 (𝐴𝑉 → ran (invg𝐺) ⊆ (Base‘𝐺))
161 cndis 23176 . . . . . . 7 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
16212, 161mpdan 687 . . . . . 6 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
16321, 162sseqtrrd 3973 . . . . 5 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
164 cnrest2 23171 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (invg𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
165158, 160, 163, 164syl3anc 1373 . . . 4 (𝐴𝑉 → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
166155, 165mpbid 232 . . 3 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))))
167153oveq1d 7364 . . . . 5 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)))
168167, 11eqtrd 2764 . . . 4 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
169168oveq2d 7365 . . 3 (𝐴𝑉 → ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) = ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
170166, 169eleqtrd 2830 . 2 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
171 eqid 2729 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
172171, 142istgp 23962 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
1732, 9, 170, 172syl3anbrc 1344 1 (𝐴𝑉𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  wss 3903  𝒫 cpw 4551  {csn 4577   cuni 4858  cmpt 5173   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6476  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  m cmap 8753  Basecbs 17120  t crest 17324  TopOpenctopn 17325  tcpt 17342  SubMndcsubmnd 18656  EndoFMndcefmnd 18742  Grpcgrp 18812  invgcminusg 18813  SymGrpcsymg 19248  Topctop 22778  TopOnctopon 22795   Cn ccn 23109   CnP ccnp 23110  ko cxko 23446  TopMndctmd 23955  TopGrpctgp 23956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-rest 17326  df-topn 17327  df-0g 17345  df-topgen 17347  df-pt 17348  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-efmnd 18743  df-grp 18815  df-minusg 18816  df-symg 19249  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-ntr 22905  df-nei 22983  df-cn 23112  df-cnp 23113  df-cmp 23272  df-lly 23351  df-nlly 23352  df-tx 23447  df-xko 23448  df-tmd 23957  df-tgp 23958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator