MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtgp Structured version   Visualization version   GIF version

Theorem symgtgp 24135
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof shortened by AV, 30-Mar-2024.)
Hypothesis
Ref Expression
symgtgp.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgtgp (𝐴𝑉𝐺 ∈ TopGrp)

Proof of Theorem symgtgp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgtgp.g . . 3 𝐺 = (SymGrp‘𝐴)
21symggrp 19442 . 2 (𝐴𝑉𝐺 ∈ Grp)
3 eqid 2740 . . . 4 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
43efmndtmd 24130 . . 3 (𝐴𝑉 → (EndoFMnd‘𝐴) ∈ TopMnd)
5 eqid 2740 . . . 4 (Base‘𝐺) = (Base‘𝐺)
63, 1, 5symgsubmefmnd 19440 . . 3 (𝐴𝑉 → (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴)))
71, 5, 3symgressbas 19423 . . . 4 𝐺 = ((EndoFMnd‘𝐴) ↾s (Base‘𝐺))
87submtmd 24133 . . 3 (((EndoFMnd‘𝐴) ∈ TopMnd ∧ (Base‘𝐺) ∈ (SubMnd‘(EndoFMnd‘𝐴))) → 𝐺 ∈ TopMnd)
94, 6, 8syl2anc 583 . 2 (𝐴𝑉𝐺 ∈ TopMnd)
10 eqid 2740 . . . . . 6 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
111, 5symgtopn 19448 . . . . . . 7 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
12 distopon 23025 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
1310pttoponconst 23626 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
1412, 13mpdan 686 . . . . . . . 8 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
151, 5elsymgbas 19415 . . . . . . . . . 10 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
16 f1of 6862 . . . . . . . . . . 11 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
17 elmapg 8897 . . . . . . . . . . . 12 ((𝐴𝑉𝐴𝑉) → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1817anidms 566 . . . . . . . . . . 11 (𝐴𝑉 → (𝑥 ∈ (𝐴m 𝐴) ↔ 𝑥:𝐴𝐴))
1916, 18imbitrrid 246 . . . . . . . . . 10 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥 ∈ (𝐴m 𝐴)))
2015, 19sylbid 240 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴m 𝐴)))
2120ssrdv 4014 . . . . . . . 8 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝐴m 𝐴))
22 resttopon 23190 . . . . . . . 8 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝐺) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
2314, 21, 22syl2anc 583 . . . . . . 7 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
2411, 23eqeltrrd 2845 . . . . . 6 (𝐴𝑉 → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
25 id 22 . . . . . 6 (𝐴𝑉𝐴𝑉)
26 distop 23023 . . . . . . 7 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
27 fconst6g 6810 . . . . . . 7 (𝒫 𝐴 ∈ Top → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
2826, 27syl 17 . . . . . 6 (𝐴𝑉 → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
2915biimpa 476 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
30 f1ocnv 6874 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
31 f1of 6862 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
3229, 30, 313syl 18 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴𝐴)
3332ffvelcdmda 7118 . . . . . . . . . 10 (((𝐴𝑉𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
3433an32s 651 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥𝑦) ∈ 𝐴)
3534fmpttd 7149 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
3635adantr 480 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
37 cnveq 5898 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑓𝑥 = 𝑓)
3837fveq1d 6922 . . . . . . . . . . . . . . 15 (𝑥 = 𝑓 → (𝑥𝑦) = (𝑓𝑦))
39 eqid 2740 . . . . . . . . . . . . . . 15 (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
40 fvex 6933 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
4138, 39, 40fvmpt 7029 . . . . . . . . . . . . . 14 (𝑓 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
4241ad2antlr 726 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
4342eleq1d 2829 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
44 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦)))
4544mptiniseg 6270 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
4645elv 3493 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}
47 eqid 2740 . . . . . . . . . . . . . . . . . . 19 ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺))
4814ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
4921ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (Base‘𝐺) ⊆ (𝐴m 𝐴))
50 toponuni 22941 . . . . . . . . . . . . . . . . . . . . 21 ((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) → (𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
51 mpteq1 5259 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴m 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
5248, 50, 513syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
53 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝐴𝑉)
5428ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
551, 5elsymgbas 19415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴𝑉 → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
5655adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴𝑉𝑦𝐴) → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
5756biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴1-1-onto𝐴)
58 f1ocnv 6874 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴1-1-onto𝐴)
59 f1of 6862 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
6057, 58, 593syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
61 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑦𝐴)
6260, 61ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
63 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
6463, 10ptpjcn 23640 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉 ∧ (𝐴 × {𝒫 𝐴}):𝐴⟶Top ∧ (𝑓𝑦) ∈ 𝐴) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
6553, 54, 62, 64syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
6626ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ Top)
67 fvconst2g 7239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝒫 𝐴 ∈ Top ∧ (𝑓𝑦) ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
6866, 62, 67syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
6968oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))) = ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7065, 69eleqtrd 2846 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7152, 70eqeltrd 2844 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴m 𝐴) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
7247, 48, 49, 71cnmpt1res 23705 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴))
7311oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
7473ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
7572, 74eleqtrd 2846 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
76 snelpwi 5463 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
7776ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑦} ∈ 𝒫 𝐴)
78 cnima 23294 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ∧ {𝑦} ∈ 𝒫 𝐴) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
7975, 77, 78syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
8046, 79eqeltrrid 2849 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
8180adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
82 fveq1 6919 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑓 → (𝑢‘(𝑓𝑦)) = (𝑓‘(𝑓𝑦)))
8382eqeq1d 2742 . . . . . . . . . . . . . . 15 (𝑢 = 𝑓 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑓‘(𝑓𝑦)) = 𝑦))
84 simplr 768 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ (Base‘𝐺))
8557adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓:𝐴1-1-onto𝐴)
86 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑦𝐴)
87 f1ocnvfv2 7313 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝐴𝑦𝐴) → (𝑓‘(𝑓𝑦)) = 𝑦)
8885, 86, 87syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑓‘(𝑓𝑦)) = 𝑦)
8983, 84, 88elrabd 3710 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
90 ssrab2 4103 . . . . . . . . . . . . . . . . . 18 {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺)
9190a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺))
9215ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
9392biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
9462ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
95 f1ocnvfv 7314 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:𝐴1-1-onto𝐴 ∧ (𝑓𝑦) ∈ 𝐴) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
9693, 94, 95syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
97 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝑡)
98 eleq1 2832 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑦) = (𝑓𝑦) → ((𝑥𝑦) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
9997, 98syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥𝑦) = (𝑓𝑦) → (𝑥𝑦) ∈ 𝑡))
10096, 99syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
101100ralrimiva 3152 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
102 fveq1 6919 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑥 → (𝑢‘(𝑓𝑦)) = (𝑥‘(𝑓𝑦)))
103102eqeq1d 2742 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑥‘(𝑓𝑦)) = 𝑦))
104103ralrab 3715 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
105101, 104sylibr 234 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡)
106 ssrab 4096 . . . . . . . . . . . . . . . . 17 ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡} ↔ ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺) ∧ ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡))
10791, 105, 106sylanbrc 582 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡})
10839mptpreima 6269 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡}
109107, 108sseqtrrdi 4060 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡))
110 funmpt 6616 . . . . . . . . . . . . . . . 16 Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
111 fvex 6933 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦) ∈ V
112111, 39dmmpti 6724 . . . . . . . . . . . . . . . . 17 dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (Base‘𝐺)
11391, 112sseqtrrdi 4060 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)))
114 funimass3 7087 . . . . . . . . . . . . . . . 16 ((Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∧ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
115110, 113, 114sylancr 586 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
116109, 115mpbird 257 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)
117 eleq2 2833 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (𝑓𝑣𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
118 imaeq2 6085 . . . . . . . . . . . . . . . . 17 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
119118sseq1d 4040 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡 ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡))
120117, 119anbi12d 631 . . . . . . . . . . . . . . 15 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡) ↔ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)))
121120rspcev 3635 . . . . . . . . . . . . . 14 (({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺) ∧ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
12281, 89, 116, 121syl12anc 836 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
123122expr 456 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑓𝑦) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
12443, 123sylbid 240 . . . . . . . . . . 11 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
125124ralrimiva 3152 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
12624ad2antrr 725 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
12712ad2antrr 725 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ (TopOn‘𝐴))
128 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓 ∈ (Base‘𝐺))
129 iscnp 23266 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
130126, 127, 128, 129syl3anc 1371 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
13136, 125, 130mpbir2and 712 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
132131ralrimiva 3152 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
133 cncnp 23309 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
13424, 12, 133syl2anc 583 . . . . . . . . 9 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
135134adantr 480 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
13635, 132, 135mpbir2and 712 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
137 fvconst2g 7239 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
13826, 137sylan 579 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
139138oveq2d 7464 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
140136, 139eleqtrrd 2847 . . . . . 6 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)))
14110, 24, 25, 28, 140ptcn 23656 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))) ∈ ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
142 eqid 2740 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
1435, 142grpinvf 19026 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
1442, 143syl 17 . . . . . . 7 (𝐴𝑉 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
145144feqmptd 6990 . . . . . 6 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
1461, 5, 142symginv 19444 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → ((invg𝐺)‘𝑥) = 𝑥)
147146adantl 481 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = 𝑥)
14832feqmptd 6990 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 = (𝑦𝐴 ↦ (𝑥𝑦)))
149147, 148eqtrd 2780 . . . . . . 7 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = (𝑦𝐴 ↦ (𝑥𝑦)))
150149mpteq2dva 5266 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
151145, 150eqtrd 2780 . . . . 5 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
152 xkopt 23684 . . . . . . 7 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
15326, 152mpancom 687 . . . . . 6 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
154153oveq2d 7464 . . . . 5 (𝐴𝑉 → ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) = ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
155141, 151, 1543eltr4d 2859 . . . 4 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)))
156 eqid 2740 . . . . . . 7 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
157156xkotopon 23629 . . . . . 6 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
15826, 26, 157syl2anc 583 . . . . 5 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
159 frn 6754 . . . . . 6 ((invg𝐺):(Base‘𝐺)⟶(Base‘𝐺) → ran (invg𝐺) ⊆ (Base‘𝐺))
1602, 143, 1593syl 18 . . . . 5 (𝐴𝑉 → ran (invg𝐺) ⊆ (Base‘𝐺))
161 cndis 23320 . . . . . . 7 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
16212, 161mpdan 686 . . . . . 6 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
16321, 162sseqtrrd 4050 . . . . 5 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
164 cnrest2 23315 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (invg𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
165158, 160, 163, 164syl3anc 1371 . . . 4 (𝐴𝑉 → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
166155, 165mpbid 232 . . 3 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))))
167153oveq1d 7463 . . . . 5 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)))
168167, 11eqtrd 2780 . . . 4 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
169168oveq2d 7464 . . 3 (𝐴𝑉 → ((TopOpen‘𝐺) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝐺))) = ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
170166, 169eleqtrd 2846 . 2 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
171 eqid 2740 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
172171, 142istgp 24106 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
1732, 9, 170, 172syl3anbrc 1343 1 (𝐴𝑉𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  t crest 17480  TopOpenctopn 17481  tcpt 17498  SubMndcsubmnd 18817  EndoFMndcefmnd 18903  Grpcgrp 18973  invgcminusg 18974  SymGrpcsymg 19410  Topctop 22920  TopOnctopon 22937   Cn ccn 23253   CnP ccnp 23254  ko cxko 23590  TopMndctmd 24099  TopGrpctgp 24100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-rest 17482  df-topn 17483  df-0g 17501  df-topgen 17503  df-pt 17504  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-symg 19411  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-nei 23127  df-cn 23256  df-cnp 23257  df-cmp 23416  df-lly 23495  df-nlly 23496  df-tx 23591  df-xko 23592  df-tmd 24101  df-tgp 24102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator