MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtgp Structured version   Visualization version   GIF version

Theorem symgtgp 22125
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
symgtgp.g 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symgtgp (𝐴𝑉𝐺 ∈ TopGrp)

Proof of Theorem symgtgp
Dummy variables 𝑡 𝑓 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgtgp.g . . 3 𝐺 = (SymGrp‘𝐴)
21symggrp 18027 . 2 (𝐴𝑉𝐺 ∈ Grp)
3 grpmnd 17637 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
42, 3syl 17 . . 3 (𝐴𝑉𝐺 ∈ Mnd)
5 eqid 2771 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
61, 5symgtopn 18032 . . . . 5 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
7 distopon 21022 . . . . . . 7 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
8 eqid 2771 . . . . . . . 8 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
98pttoponconst 21621 . . . . . . 7 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴𝑚 𝐴)))
107, 9mpdan 667 . . . . . 6 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴𝑚 𝐴)))
111, 5elsymgbas 18009 . . . . . . . 8 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
12 f1of 6278 . . . . . . . . 9 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
13 elmapg 8022 . . . . . . . . . 10 ((𝐴𝑉𝐴𝑉) → (𝑥 ∈ (𝐴𝑚 𝐴) ↔ 𝑥:𝐴𝐴))
1413anidms 556 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (𝐴𝑚 𝐴) ↔ 𝑥:𝐴𝐴))
1512, 14syl5ibr 236 . . . . . . . 8 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥 ∈ (𝐴𝑚 𝐴)))
1611, 15sylbid 230 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (𝐴𝑚 𝐴)))
1716ssrdv 3758 . . . . . 6 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝐴𝑚 𝐴))
18 resttopon 21186 . . . . . 6 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴𝑚 𝐴)) ∧ (Base‘𝐺) ⊆ (𝐴𝑚 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
1910, 17, 18syl2anc 573 . . . . 5 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) ∈ (TopOn‘(Base‘𝐺)))
206, 19eqeltrrd 2851 . . . 4 (𝐴𝑉 → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
21 eqid 2771 . . . . 5 (TopOpen‘𝐺) = (TopOpen‘𝐺)
225, 21istps 20959 . . . 4 (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2320, 22sylibr 224 . . 3 (𝐴𝑉𝐺 ∈ TopSp)
24 eqid 2771 . . . . . . . 8 (+g𝐺) = (+g𝐺)
251, 5, 24symgplusg 18016 . . . . . . 7 (+g𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
26 eqid 2771 . . . . . . . 8 ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)) = ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))
27 distop 21020 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
28 eqid 2771 . . . . . . . . . 10 (𝒫 𝐴 ^ko 𝒫 𝐴) = (𝒫 𝐴 ^ko 𝒫 𝐴)
2928xkotopon 21624 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴 ^ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
3027, 27, 29syl2anc 573 . . . . . . . 8 (𝐴𝑉 → (𝒫 𝐴 ^ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
31 cndis 21316 . . . . . . . . . 10 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴𝑚 𝐴))
327, 31mpdan 667 . . . . . . . . 9 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴𝑚 𝐴))
3317, 32sseqtr4d 3791 . . . . . . . 8 (𝐴𝑉 → (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
34 disllycmp 21522 . . . . . . . . . 10 (𝐴𝑉 → 𝒫 𝐴 ∈ Locally Comp)
35 llynlly 21501 . . . . . . . . . 10 (𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
3634, 35syl 17 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
37 eqid 2771 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦))
3837xkococn 21684 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴 ^ko 𝒫 𝐴) ×t (𝒫 𝐴 ^ko 𝒫 𝐴)) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)))
3927, 36, 27, 38syl3anc 1476 . . . . . . . 8 (𝐴𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴 ^ko 𝒫 𝐴) ×t (𝒫 𝐴 ^ko 𝒫 𝐴)) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)))
4026, 30, 33, 26, 30, 33, 39cnmpt2res 21701 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)))
4125, 40syl5eqel 2854 . . . . . 6 (𝐴𝑉 → (+g𝐺) ∈ ((((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)))
42 xkopt 21679 . . . . . . . . . . 11 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4327, 42mpancom 668 . . . . . . . . . 10 (𝐴𝑉 → (𝒫 𝐴 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4443oveq1d 6808 . . . . . . . . 9 (𝐴𝑉 → ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)))
4544, 6eqtrd 2805 . . . . . . . 8 (𝐴𝑉 → ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)) = (TopOpen‘𝐺))
4645, 45oveq12d 6811 . . . . . . 7 (𝐴𝑉 → (((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4746oveq1d 6808 . . . . . 6 (𝐴𝑉 → ((((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)) ×t ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)) = (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)))
4841, 47eleqtrd 2852 . . . . 5 (𝐴𝑉 → (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)))
49 vex 3354 . . . . . . . . . . . 12 𝑥 ∈ V
50 vex 3354 . . . . . . . . . . . 12 𝑦 ∈ V
5149, 50coex 7265 . . . . . . . . . . 11 (𝑥𝑦) ∈ V
5225, 51fnmpt2i 7389 . . . . . . . . . 10 (+g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺))
53 eqid 2771 . . . . . . . . . . 11 (+𝑓𝐺) = (+𝑓𝐺)
545, 24, 53plusfeq 17457 . . . . . . . . . 10 ((+g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (+𝑓𝐺) = (+g𝐺))
5552, 54ax-mp 5 . . . . . . . . 9 (+𝑓𝐺) = (+g𝐺)
5655eqcomi 2780 . . . . . . . 8 (+g𝐺) = (+𝑓𝐺)
575, 56grpplusf 17642 . . . . . . 7 (𝐺 ∈ Grp → (+g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
58 frn 6193 . . . . . . 7 ((+g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → ran (+g𝐺) ⊆ (Base‘𝐺))
592, 57, 583syl 18 . . . . . 6 (𝐴𝑉 → ran (+g𝐺) ⊆ (Base‘𝐺))
60 cnrest2 21311 . . . . . 6 (((𝒫 𝐴 ^ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)) ↔ (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
6130, 59, 33, 60syl3anc 1476 . . . . 5 (𝐴𝑉 → ((+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)) ↔ (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
6248, 61mpbid 222 . . . 4 (𝐴𝑉 → (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))))
6345oveq2d 6809 . . . 4 (𝐴𝑉 → (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))) = (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
6462, 63eleqtrd 2852 . . 3 (𝐴𝑉 → (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
6556, 21istmd 22098 . . 3 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
664, 23, 64, 65syl3anbrc 1428 . 2 (𝐴𝑉𝐺 ∈ TopMnd)
67 id 22 . . . . . 6 (𝐴𝑉𝐴𝑉)
68 fconst6g 6234 . . . . . . 7 (𝒫 𝐴 ∈ Top → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
6927, 68syl 17 . . . . . 6 (𝐴𝑉 → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
7011biimpa 462 . . . . . . . . . . . 12 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
71 f1ocnv 6290 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
72 f1of 6278 . . . . . . . . . . . 12 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
7370, 71, 723syl 18 . . . . . . . . . . 11 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴𝐴)
7473ffvelrnda 6502 . . . . . . . . . 10 (((𝐴𝑉𝑥 ∈ (Base‘𝐺)) ∧ 𝑦𝐴) → (𝑥𝑦) ∈ 𝐴)
7574an32s 631 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥𝑦) ∈ 𝐴)
76 eqid 2771 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
7775, 76fmptd 6527 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
7877adantr 466 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴)
79 cnveq 5434 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑓𝑥 = 𝑓)
8079fveq1d 6334 . . . . . . . . . . . . . . 15 (𝑥 = 𝑓 → (𝑥𝑦) = (𝑓𝑦))
81 fvex 6342 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
8280, 76, 81fvmpt 6424 . . . . . . . . . . . . . 14 (𝑓 ∈ (Base‘𝐺) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
8382ad2antlr 706 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) = (𝑓𝑦))
8483eleq1d 2835 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
85 eqid 2771 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦)))
8685mptiniseg 5773 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
8750, 86ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}
88 eqid 2771 . . . . . . . . . . . . . . . . . . 19 ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺))
8910ad2antrr 705 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴𝑚 𝐴)))
9017ad2antrr 705 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (Base‘𝐺) ⊆ (𝐴𝑚 𝐴))
91 toponuni 20939 . . . . . . . . . . . . . . . . . . . . 21 ((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴𝑚 𝐴)) → (𝐴𝑚 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
92 mpteq1 4871 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑚 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})) → (𝑢 ∈ (𝐴𝑚 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
9389, 91, 923syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴𝑚 𝐴) ↦ (𝑢‘(𝑓𝑦))) = (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))))
94 simpll 750 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝐴𝑉)
9569ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝐴 × {𝒫 𝐴}):𝐴⟶Top)
961, 5elsymgbas 18009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴𝑉 → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
9796adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴𝑉𝑦𝐴) → (𝑓 ∈ (Base‘𝐺) ↔ 𝑓:𝐴1-1-onto𝐴))
9897biimpa 462 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴1-1-onto𝐴)
99 f1ocnv 6290 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴1-1-onto𝐴)
100 f1of 6278 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝐴𝑓:𝐴𝐴)
10198, 99, 1003syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
102 simplr 752 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑦𝐴)
103101, 102ffvelrnd 6503 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
104 eqid 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
105104, 8ptpjcn 21635 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑉 ∧ (𝐴 × {𝒫 𝐴}):𝐴⟶Top ∧ (𝑓𝑦) ∈ 𝐴) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
10694, 95, 103, 105syl3anc 1476 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))))
10727ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ Top)
108 fvconst2g 6611 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝒫 𝐴 ∈ Top ∧ (𝑓𝑦) ∈ 𝐴) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
109107, 103, 108syl2anc 573 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦)) = 𝒫 𝐴)
110109oveq2d 6809 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((∏t‘(𝐴 × {𝒫 𝐴})) Cn ((𝐴 × {𝒫 𝐴})‘(𝑓𝑦))) = ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
111106, 110eleqtrd 2852 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 (∏t‘(𝐴 × {𝒫 𝐴})) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
11293, 111eqeltrd 2850 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (𝐴𝑚 𝐴) ↦ (𝑢‘(𝑓𝑦))) ∈ ((∏t‘(𝐴 × {𝒫 𝐴})) Cn 𝒫 𝐴))
11388, 89, 90, 112cnmpt1res 21700 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴))
1146oveq1d 6808 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑉 → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
115114ad2antrr 705 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝐺)) Cn 𝒫 𝐴) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
116113, 115eleqtrd 2852 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
117 snelpwi 5040 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
118117ad2antlr 706 . . . . . . . . . . . . . . . . 17 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑦} ∈ 𝒫 𝐴)
119 cnima 21290 . . . . . . . . . . . . . . . . 17 (((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ∧ {𝑦} ∈ 𝒫 𝐴) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
120116, 118, 119syl2anc 573 . . . . . . . . . . . . . . . 16 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑢 ∈ (Base‘𝐺) ↦ (𝑢‘(𝑓𝑦))) “ {𝑦}) ∈ (TopOpen‘𝐺))
12187, 120syl5eqelr 2855 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
122121adantr 466 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺))
123 simplr 752 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ (Base‘𝐺))
12498adantr 466 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓:𝐴1-1-onto𝐴)
125 simpllr 760 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑦𝐴)
126 f1ocnvfv2 6676 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝐴𝑦𝐴) → (𝑓‘(𝑓𝑦)) = 𝑦)
127124, 125, 126syl2anc 573 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑓‘(𝑓𝑦)) = 𝑦)
128 fveq1 6331 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑓 → (𝑢‘(𝑓𝑦)) = (𝑓‘(𝑓𝑦)))
129128eqeq1d 2773 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑓 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑓‘(𝑓𝑦)) = 𝑦))
130129elrab 3515 . . . . . . . . . . . . . . 15 (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ↔ (𝑓 ∈ (Base‘𝐺) ∧ (𝑓‘(𝑓𝑦)) = 𝑦))
131123, 127, 130sylanbrc 572 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → 𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦})
132 ssrab2 3836 . . . . . . . . . . . . . . . . . 18 {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺)
133132a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺))
13411ad3antrrr 709 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
135134biimpa 462 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
136103ad2antrr 705 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝐴)
137 f1ocnvfv 6677 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥:𝐴1-1-onto𝐴 ∧ (𝑓𝑦) ∈ 𝐴) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
138135, 136, 137syl2anc 573 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) = (𝑓𝑦)))
139 simplrr 763 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑓𝑦) ∈ 𝑡)
140 eleq1 2838 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑦) = (𝑓𝑦) → ((𝑥𝑦) ∈ 𝑡 ↔ (𝑓𝑦) ∈ 𝑡))
141139, 140syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥𝑦) = (𝑓𝑦) → (𝑥𝑦) ∈ 𝑡))
142138, 141syld 47 . . . . . . . . . . . . . . . . . . 19 (((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
143142ralrimiva 3115 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
144 fveq1 6331 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑥 → (𝑢‘(𝑓𝑦)) = (𝑥‘(𝑓𝑦)))
145144eqeq1d 2773 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑢‘(𝑓𝑦)) = 𝑦 ↔ (𝑥‘(𝑓𝑦)) = 𝑦))
146145ralrab 3520 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ (Base‘𝐺)((𝑥‘(𝑓𝑦)) = 𝑦 → (𝑥𝑦) ∈ 𝑡))
147143, 146sylibr 224 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡)
148 ssrab 3829 . . . . . . . . . . . . . . . . 17 ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡} ↔ ({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ (Base‘𝐺) ∧ ∀𝑥 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} (𝑥𝑦) ∈ 𝑡))
149133, 147, 148sylanbrc 572 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡})
15076mptpreima 5772 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑥𝑦) ∈ 𝑡}
151149, 150syl6sseqr 3801 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡))
152 funmpt 6069 . . . . . . . . . . . . . . . 16 Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))
153 fvex 6342 . . . . . . . . . . . . . . . . . 18 (𝑥𝑦) ∈ V
154153, 76dmmpti 6163 . . . . . . . . . . . . . . . . 17 dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) = (Base‘𝐺)
155133, 154syl6sseqr 3801 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)))
156 funimass3 6476 . . . . . . . . . . . . . . . 16 ((Fun (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∧ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ dom (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
157152, 155, 156sylancr 575 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡 ↔ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ⊆ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑡)))
158151, 157mpbird 247 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)
159 eleq2 2839 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (𝑓𝑣𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
160 imaeq2 5603 . . . . . . . . . . . . . . . . 17 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) = ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}))
161160sseq1d 3781 . . . . . . . . . . . . . . . 16 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡 ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡))
162159, 161anbi12d 616 . . . . . . . . . . . . . . 15 (𝑣 = {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} → ((𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡) ↔ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)))
163162rspcev 3460 . . . . . . . . . . . . . 14 (({𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∈ (TopOpen‘𝐺) ∧ (𝑓 ∈ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦} ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ {𝑢 ∈ (Base‘𝐺) ∣ (𝑢‘(𝑓𝑦)) = 𝑦}) ⊆ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
164122, 131, 158, 163syl12anc 1474 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ (𝑡 ∈ 𝒫 𝐴 ∧ (𝑓𝑦) ∈ 𝑡)) → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡))
165164expr 444 . . . . . . . . . . . 12 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → ((𝑓𝑦) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
16684, 165sylbid 230 . . . . . . . . . . 11 ((((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ 𝒫 𝐴) → (((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
167166ralrimiva 3115 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))
16820ad2antrr 705 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
1697ad2antrr 705 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝒫 𝐴 ∈ (TopOn‘𝐴))
170 simpr 471 . . . . . . . . . . 11 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓 ∈ (Base‘𝐺))
171 iscnp 21262 . . . . . . . . . . 11 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
172168, 169, 170, 171syl3anc 1476 . . . . . . . . . 10 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑡 ∈ 𝒫 𝐴(((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦))‘𝑓) ∈ 𝑡 → ∃𝑣 ∈ (TopOpen‘𝐺)(𝑓𝑣 ∧ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) “ 𝑣) ⊆ 𝑡)))))
17378, 167, 172mpbir2and 692 . . . . . . . . 9 (((𝐴𝑉𝑦𝐴) ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
174173ralrimiva 3115 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))
175 cncnp 21305 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
17620, 7, 175syl2anc 573 . . . . . . . . 9 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
177176adantr 466 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴) ↔ ((𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)):(Base‘𝐺)⟶𝐴 ∧ ∀𝑓 ∈ (Base‘𝐺)(𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ (((TopOpen‘𝐺) CnP 𝒫 𝐴)‘𝑓))))
17877, 174, 177mpbir2and 692 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn 𝒫 𝐴))
179 fvconst2g 6611 . . . . . . . . 9 ((𝒫 𝐴 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
18027, 179sylan 569 . . . . . . . 8 ((𝐴𝑉𝑦𝐴) → ((𝐴 × {𝒫 𝐴})‘𝑦) = 𝒫 𝐴)
181180oveq2d 6809 . . . . . . 7 ((𝐴𝑉𝑦𝐴) → ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)) = ((TopOpen‘𝐺) Cn 𝒫 𝐴))
182178, 181eleqtrrd 2853 . . . . . 6 ((𝐴𝑉𝑦𝐴) → (𝑥 ∈ (Base‘𝐺) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝐺) Cn ((𝐴 × {𝒫 𝐴})‘𝑦)))
1838, 20, 67, 69, 182ptcn 21651 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))) ∈ ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
184 eqid 2771 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
1855, 184grpinvf 17674 . . . . . . . 8 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
1862, 185syl 17 . . . . . . 7 (𝐴𝑉 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
187186feqmptd 6391 . . . . . 6 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
1881, 5, 184symginv 18029 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐺) → ((invg𝐺)‘𝑥) = 𝑥)
189188adantl 467 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = 𝑥)
19073feqmptd 6391 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 = (𝑦𝐴 ↦ (𝑥𝑦)))
191189, 190eqtrd 2805 . . . . . . 7 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = (𝑦𝐴 ↦ (𝑥𝑦)))
192191mpteq2dva 4878 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
193187, 192eqtrd 2805 . . . . 5 (𝐴𝑉 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ (𝑦𝐴 ↦ (𝑥𝑦))))
19443oveq2d 6809 . . . . 5 (𝐴𝑉 → ((TopOpen‘𝐺) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)) = ((TopOpen‘𝐺) Cn (∏t‘(𝐴 × {𝒫 𝐴}))))
195183, 193, 1943eltr4d 2865 . . . 4 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)))
196 frn 6193 . . . . . 6 ((invg𝐺):(Base‘𝐺)⟶(Base‘𝐺) → ran (invg𝐺) ⊆ (Base‘𝐺))
1972, 185, 1963syl 18 . . . . 5 (𝐴𝑉 → ran (invg𝐺) ⊆ (Base‘𝐺))
198 cnrest2 21311 . . . . 5 (((𝒫 𝐴 ^ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (invg𝐺) ⊆ (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
19930, 197, 33, 198syl3anc 1476 . . . 4 (𝐴𝑉 → ((invg𝐺) ∈ ((TopOpen‘𝐺) Cn (𝒫 𝐴 ^ko 𝒫 𝐴)) ↔ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺)))))
200195, 199mpbid 222 . . 3 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))))
20145oveq2d 6809 . . 3 (𝐴𝑉 → ((TopOpen‘𝐺) Cn ((𝒫 𝐴 ^ko 𝒫 𝐴) ↾t (Base‘𝐺))) = ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
202200, 201eleqtrd 2852 . 2 (𝐴𝑉 → (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺)))
20321, 184istgp 22101 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ ((TopOpen‘𝐺) Cn (TopOpen‘𝐺))))
2042, 66, 202, 203syl3anbrc 1428 1 (𝐴𝑉𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  wss 3723  𝒫 cpw 4297  {csn 4316   cuni 4574  cmpt 4863   × cxp 5247  ccnv 5248  dom cdm 5249  ran crn 5250  cima 5252  ccom 5253  Fun wfun 6025   Fn wfn 6026  wf 6027  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  cmpt2 6795  𝑚 cmap 8009  Basecbs 16064  +gcplusg 16149  t crest 16289  TopOpenctopn 16290  tcpt 16307  +𝑓cplusf 17447  Mndcmnd 17502  Grpcgrp 17630  invgcminusg 17631  SymGrpcsymg 18004  Topctop 20918  TopOnctopon 20935  TopSpctps 20957   Cn ccn 21249   CnP ccnp 21250  Compccmp 21410  Locally clly 21488  𝑛-Locally cnlly 21489   ×t ctx 21584   ^ko cxko 21585  TopMndctmd 22094  TopGrpctgp 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-tset 16168  df-rest 16291  df-topn 16292  df-0g 16310  df-topgen 16312  df-pt 16313  df-plusf 17449  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-symg 18005  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-ntr 21045  df-nei 21123  df-cn 21252  df-cnp 21253  df-cmp 21411  df-lly 21490  df-nlly 21491  df-tx 21586  df-xko 21587  df-tmd 22096  df-tgp 22097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator