![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tmdALT | Structured version Visualization version GIF version |
Description: Alternate proof of xrge0tmd 33602. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xrge0tmdALT | β’ (β*π βΎs (0[,]+β)) β TopMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0cmn 21343 | . . 3 β’ (β*π βΎs (0[,]+β)) β CMnd | |
2 | cmnmnd 19754 | . . 3 β’ ((β*π βΎs (0[,]+β)) β CMnd β (β*π βΎs (0[,]+β)) β Mnd) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ (β*π βΎs (0[,]+β)) β Mnd |
4 | xrge0tps 33599 | . 2 β’ (β*π βΎs (0[,]+β)) β TopSp | |
5 | eqeq1 2729 | . . . . 5 β’ (π¦ = π₯ β (π¦ = 0 β π₯ = 0)) | |
6 | fveq2 6891 | . . . . . 6 β’ (π¦ = π₯ β (logβπ¦) = (logβπ₯)) | |
7 | 6 | negeqd 11482 | . . . . 5 β’ (π¦ = π₯ β -(logβπ¦) = -(logβπ₯)) |
8 | 5, 7 | ifbieq2d 4550 | . . . 4 β’ (π¦ = π₯ β if(π¦ = 0, +β, -(logβπ¦)) = if(π₯ = 0, +β, -(logβπ₯))) |
9 | 8 | cbvmptv 5256 | . . 3 β’ (π¦ β (0[,]1) β¦ if(π¦ = 0, +β, -(logβπ¦))) = (π₯ β (0[,]1) β¦ if(π₯ = 0, +β, -(logβπ₯))) |
10 | eqid 2725 | . . 3 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
11 | eqid 2725 | . . 3 β’ ( +π βΎ ((0[,]+β) Γ (0[,]+β))) = ( +π βΎ ((0[,]+β) Γ (0[,]+β))) | |
12 | 9, 10, 11 | xrge0pluscn 33597 | . 2 β’ ( +π βΎ ((0[,]+β) Γ (0[,]+β))) β ((((ordTopβ β€ ) βΎt (0[,]+β)) Γt ((ordTopβ β€ ) βΎt (0[,]+β))) Cn ((ordTopβ β€ ) βΎt (0[,]+β))) |
13 | xrsbas 21313 | . . . . 5 β’ β* = (Baseββ*π ) | |
14 | eqid 2725 | . . . . 5 β’ (β*π βΎs (0[,]+β)) = (β*π βΎs (0[,]+β)) | |
15 | xrsadd 21314 | . . . . 5 β’ +π = (+gββ*π ) | |
16 | xaddf 13233 | . . . . . 6 β’ +π :(β* Γ β*)βΆβ* | |
17 | ffn 6716 | . . . . . 6 β’ ( +π :(β* Γ β*)βΆβ* β +π Fn (β* Γ β*)) | |
18 | 16, 17 | ax-mp 5 | . . . . 5 β’ +π Fn (β* Γ β*) |
19 | iccssxr 13437 | . . . . 5 β’ (0[,]+β) β β* | |
20 | 13, 14, 15, 18, 19 | ressplusf 32727 | . . . 4 β’ (+πβ(β*π βΎs (0[,]+β))) = ( +π βΎ ((0[,]+β) Γ (0[,]+β))) |
21 | 20 | eqcomi 2734 | . . 3 β’ ( +π βΎ ((0[,]+β) Γ (0[,]+β))) = (+πβ(β*π βΎs (0[,]+β))) |
22 | xrge0base 32784 | . . . 4 β’ (0[,]+β) = (Baseβ(β*π βΎs (0[,]+β))) | |
23 | ovex 7448 | . . . . 5 β’ (0[,]+β) β V | |
24 | xrstset 21316 | . . . . . 6 β’ (ordTopβ β€ ) = (TopSetββ*π ) | |
25 | 14, 24 | resstset 17343 | . . . . 5 β’ ((0[,]+β) β V β (ordTopβ β€ ) = (TopSetβ(β*π βΎs (0[,]+β)))) |
26 | 23, 25 | ax-mp 5 | . . . 4 β’ (ordTopβ β€ ) = (TopSetβ(β*π βΎs (0[,]+β))) |
27 | 22, 26 | topnval 17413 | . . 3 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) = (TopOpenβ(β*π βΎs (0[,]+β))) |
28 | 21, 27 | istmd 23994 | . 2 β’ ((β*π βΎs (0[,]+β)) β TopMnd β ((β*π βΎs (0[,]+β)) β Mnd β§ (β*π βΎs (0[,]+β)) β TopSp β§ ( +π βΎ ((0[,]+β) Γ (0[,]+β))) β ((((ordTopβ β€ ) βΎt (0[,]+β)) Γt ((ordTopβ β€ ) βΎt (0[,]+β))) Cn ((ordTopβ β€ ) βΎt (0[,]+β))))) |
29 | 3, 4, 12, 28 | mpbir3an 1338 | 1 β’ (β*π βΎs (0[,]+β)) β TopMnd |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 Vcvv 3463 ifcif 4524 β¦ cmpt 5226 Γ cxp 5670 βΎ cres 5674 Fn wfn 6537 βΆwf 6538 βcfv 6542 (class class class)co 7415 0cc0 11136 1c1 11137 +βcpnf 11273 β*cxr 11275 β€ cle 11277 -cneg 11473 +π cxad 13120 [,]cicc 13357 βΎs cress 17206 TopSetcts 17236 βΎt crest 17399 ordTopcordt 17478 β*π cxrs 17479 +πcplusf 18594 Mndcmnd 18691 CMndccmn 19737 TopSpctps 22850 Cn ccn 23144 Γt ctx 23480 TopMndctmd 23990 logclog 26504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 ax-mulf 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-er 8721 df-map 8843 df-pm 8844 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-q 12961 df-rp 13005 df-xneg 13122 df-xadd 13123 df-xmul 13124 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-fl 13787 df-mod 13865 df-seq 13997 df-exp 14057 df-fac 14263 df-bc 14292 df-hash 14320 df-shft 15044 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-limsup 15445 df-clim 15462 df-rlim 15463 df-sum 15663 df-ef 16041 df-sin 16043 df-cos 16044 df-pi 16046 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-hom 17254 df-cco 17255 df-rest 17401 df-topn 17402 df-0g 17420 df-gsum 17421 df-topgen 17422 df-pt 17423 df-prds 17426 df-ordt 17480 df-xrs 17481 df-qtop 17486 df-imas 17487 df-xps 17489 df-mre 17563 df-mrc 17564 df-acs 17566 df-ps 18555 df-tsr 18556 df-plusf 18596 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-mulg 19026 df-subg 19080 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-cring 20178 df-subrng 20485 df-subrg 20510 df-abv 20699 df-lmod 20747 df-scaf 20748 df-sra 21060 df-rgmod 21061 df-psmet 21273 df-xmet 21274 df-met 21275 df-bl 21276 df-mopn 21277 df-fbas 21278 df-fg 21279 df-cnfld 21282 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-tmd 23992 df-tgp 23993 df-trg 24080 df-xms 24242 df-ms 24243 df-tms 24244 df-nm 24507 df-ngp 24508 df-nrg 24510 df-nlm 24511 df-ii 24813 df-cncf 24814 df-limc 25811 df-dv 25812 df-log 26506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |