Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0tmdALT Structured version   Visualization version   GIF version

Theorem xrge0tmdALT 33909
Description: Alternate proof of xrge0tmd 33908. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xrge0tmdALT (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd

Proof of Theorem xrge0tmdALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0cmn 21301 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
2 cmnmnd 19703 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
31, 2ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
4 xrge0tps 33905 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
5 eqeq1 2733 . . . . 5 (𝑦 = 𝑥 → (𝑦 = 0 ↔ 𝑥 = 0))
6 fveq2 6840 . . . . . 6 (𝑦 = 𝑥 → (log‘𝑦) = (log‘𝑥))
76negeqd 11391 . . . . 5 (𝑦 = 𝑥 → -(log‘𝑦) = -(log‘𝑥))
85, 7ifbieq2d 4511 . . . 4 (𝑦 = 𝑥 → if(𝑦 = 0, +∞, -(log‘𝑦)) = if(𝑥 = 0, +∞, -(log‘𝑥)))
98cbvmptv 5206 . . 3 (𝑦 ∈ (0[,]1) ↦ if(𝑦 = 0, +∞, -(log‘𝑦))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
10 eqid 2729 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
11 eqid 2729 . . 3 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
129, 10, 11xrge0pluscn 33903 . 2 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
13 xrsbas 21271 . . . . 5 * = (Base‘ℝ*𝑠)
14 eqid 2729 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
15 xrsadd 21272 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
16 xaddf 13160 . . . . . 6 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
17 ffn 6670 . . . . . 6 ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*))
1816, 17ax-mp 5 . . . . 5 +𝑒 Fn (ℝ* × ℝ*)
19 iccssxr 13367 . . . . 5 (0[,]+∞) ⊆ ℝ*
2013, 14, 15, 18, 19ressplusf 32858 . . . 4 (+𝑓‘(ℝ*𝑠s (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
2120eqcomi 2738 . . 3 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = (+𝑓‘(ℝ*𝑠s (0[,]+∞)))
22 xrge0base 32925 . . . 4 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
23 ovex 7402 . . . . 5 (0[,]+∞) ∈ V
24 xrstset 21274 . . . . . 6 (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠)
2514, 24resstset 17304 . . . . 5 ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠s (0[,]+∞))))
2623, 25ax-mp 5 . . . 4 (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠s (0[,]+∞)))
2722, 26topnval 17373 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2821, 27istmd 23937 . 2 ((ℝ*𝑠s (0[,]+∞)) ∈ TopMnd ↔ ((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ TopSp ∧ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
293, 4, 12, 28mpbir3an 1342 1 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  ifcif 4484  cmpt 5183   × cxp 5629  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  +∞cpnf 11181  *cxr 11183  cle 11185  -cneg 11382   +𝑒 cxad 13046  [,]cicc 13285  s cress 17176  TopSetcts 17202  t crest 17359  ordTopcordt 17438  *𝑠cxrs 17439  +𝑓cplusf 18540  Mndcmnd 18637  CMndccmn 19686  TopSpctps 22795   Cn ccn 23087   ×t ctx 23423  TopMndctmd 23933  logclog 26439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-ordt 17440  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18501  df-tsr 18502  df-plusf 18542  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20744  df-scaf 20745  df-sra 21056  df-rgmod 21057  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-tmd 23935  df-tgp 23936  df-trg 24023  df-xms 24184  df-ms 24185  df-tms 24186  df-nm 24446  df-ngp 24447  df-nrg 24449  df-nlm 24450  df-ii 24746  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator