Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0tmdALT Structured version   Visualization version   GIF version

Theorem xrge0tmdALT 33977
Description: Alternate proof of xrge0tmd 33976. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xrge0tmdALT (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd

Proof of Theorem xrge0tmdALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0cmn 21376 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
2 cmnmnd 19778 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
31, 2ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
4 xrge0tps 33973 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
5 eqeq1 2739 . . . . 5 (𝑦 = 𝑥 → (𝑦 = 0 ↔ 𝑥 = 0))
6 fveq2 6876 . . . . . 6 (𝑦 = 𝑥 → (log‘𝑦) = (log‘𝑥))
76negeqd 11476 . . . . 5 (𝑦 = 𝑥 → -(log‘𝑦) = -(log‘𝑥))
85, 7ifbieq2d 4527 . . . 4 (𝑦 = 𝑥 → if(𝑦 = 0, +∞, -(log‘𝑦)) = if(𝑥 = 0, +∞, -(log‘𝑥)))
98cbvmptv 5225 . . 3 (𝑦 ∈ (0[,]1) ↦ if(𝑦 = 0, +∞, -(log‘𝑦))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
10 eqid 2735 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
11 eqid 2735 . . 3 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
129, 10, 11xrge0pluscn 33971 . 2 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
13 xrsbas 21346 . . . . 5 * = (Base‘ℝ*𝑠)
14 eqid 2735 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
15 xrsadd 21347 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
16 xaddf 13240 . . . . . 6 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
17 ffn 6706 . . . . . 6 ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*))
1816, 17ax-mp 5 . . . . 5 +𝑒 Fn (ℝ* × ℝ*)
19 iccssxr 13447 . . . . 5 (0[,]+∞) ⊆ ℝ*
2013, 14, 15, 18, 19ressplusf 32939 . . . 4 (+𝑓‘(ℝ*𝑠s (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
2120eqcomi 2744 . . 3 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = (+𝑓‘(ℝ*𝑠s (0[,]+∞)))
22 xrge0base 33006 . . . 4 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
23 ovex 7438 . . . . 5 (0[,]+∞) ∈ V
24 xrstset 21349 . . . . . 6 (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠)
2514, 24resstset 17379 . . . . 5 ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠s (0[,]+∞))))
2623, 25ax-mp 5 . . . 4 (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠s (0[,]+∞)))
2722, 26topnval 17448 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2821, 27istmd 24012 . 2 ((ℝ*𝑠s (0[,]+∞)) ∈ TopMnd ↔ ((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ TopSp ∧ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
293, 4, 12, 28mpbir3an 1342 1 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  ifcif 4500  cmpt 5201   × cxp 5652  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130  +∞cpnf 11266  *cxr 11268  cle 11270  -cneg 11467   +𝑒 cxad 13126  [,]cicc 13365  s cress 17251  TopSetcts 17277  t crest 17434  ordTopcordt 17513  *𝑠cxrs 17514  +𝑓cplusf 18615  Mndcmnd 18712  CMndccmn 19761  TopSpctps 22870   Cn ccn 23162   ×t ctx 23498  TopMndctmd 24008  logclog 26515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-ordt 17515  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-abv 20769  df-lmod 20819  df-scaf 20820  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tmd 24010  df-tgp 24011  df-trg 24098  df-xms 24259  df-ms 24260  df-tms 24261  df-nm 24521  df-ngp 24522  df-nrg 24524  df-nlm 24525  df-ii 24821  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator