| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tmdALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of xrge0tmd 33935. (Contributed by Thierry Arnoux, 26-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| xrge0tmdALT | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0cmn 21325 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 2 | cmnmnd 19727 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 4 | xrge0tps 33932 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 5 | eqeq1 2733 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 0 ↔ 𝑥 = 0)) | |
| 6 | fveq2 6858 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (log‘𝑦) = (log‘𝑥)) | |
| 7 | 6 | negeqd 11415 | . . . . 5 ⊢ (𝑦 = 𝑥 → -(log‘𝑦) = -(log‘𝑥)) |
| 8 | 5, 7 | ifbieq2d 4515 | . . . 4 ⊢ (𝑦 = 𝑥 → if(𝑦 = 0, +∞, -(log‘𝑦)) = if(𝑥 = 0, +∞, -(log‘𝑥))) |
| 9 | 8 | cbvmptv 5211 | . . 3 ⊢ (𝑦 ∈ (0[,]1) ↦ if(𝑦 = 0, +∞, -(log‘𝑦))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
| 10 | eqid 2729 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 11 | eqid 2729 | . . 3 ⊢ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) | |
| 12 | 9, 10, 11 | xrge0pluscn 33930 | . 2 ⊢ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))) |
| 13 | xrsbas 21295 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 14 | eqid 2729 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
| 15 | xrsadd 21296 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 16 | xaddf 13184 | . . . . . 6 ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | |
| 17 | ffn 6688 | . . . . . 6 ⊢ ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*)) | |
| 18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ +𝑒 Fn (ℝ* × ℝ*) |
| 19 | iccssxr 13391 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 20 | 13, 14, 15, 18, 19 | ressplusf 32885 | . . . 4 ⊢ (+𝑓‘(ℝ*𝑠 ↾s (0[,]+∞))) = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) |
| 21 | 20 | eqcomi 2738 | . . 3 ⊢ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) = (+𝑓‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| 22 | xrge0base 32952 | . . . 4 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 23 | ovex 7420 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
| 24 | xrstset 21298 | . . . . . 6 ⊢ (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠) | |
| 25 | 14, 24 | resstset 17328 | . . . . 5 ⊢ ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
| 26 | 23, 25 | ax-mp 5 | . . . 4 ⊢ (ordTop‘ ≤ ) = (TopSet‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| 27 | 22, 26 | topnval 17397 | . . 3 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| 28 | 21, 27 | istmd 23961 | . 2 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd ↔ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp ∧ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) ∈ ((((ordTop‘ ≤ ) ↾t (0[,]+∞)) ×t ((ordTop‘ ≤ ) ↾t (0[,]+∞))) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))) |
| 29 | 3, 4, 12, 28 | mpbir3an 1342 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 ↦ cmpt 5188 × cxp 5636 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 -cneg 11406 +𝑒 cxad 13070 [,]cicc 13309 ↾s cress 17200 TopSetcts 17226 ↾t crest 17383 ordTopcordt 17462 ℝ*𝑠cxrs 17463 +𝑓cplusf 18564 Mndcmnd 18661 CMndccmn 19710 TopSpctps 22819 Cn ccn 23111 ×t ctx 23447 TopMndctmd 23957 logclog 26463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-ordt 17464 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-subrng 20455 df-subrg 20479 df-abv 20718 df-lmod 20768 df-scaf 20769 df-sra 21080 df-rgmod 21081 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tmd 23959 df-tgp 23960 df-trg 24047 df-xms 24208 df-ms 24209 df-tms 24210 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 df-ii 24770 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |