MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndtmd Structured version   Visualization version   GIF version

Theorem efmndtmd 24022
Description: The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 24027. (Contributed by AV, 23-Feb-2024.)
Hypothesis
Ref Expression
efmndtmd.g 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndtmd (𝐴𝑉𝑀 ∈ TopMnd)

Proof of Theorem efmndtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmndtmd.g . . 3 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18799 . 2 (𝐴𝑉𝑀 ∈ Mnd)
3 eqid 2729 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
41, 3efmndtopn 18793 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
5 distopon 22918 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
6 eqid 2729 . . . . . . 7 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
76pttoponconst 23518 . . . . . 6 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
85, 7mpdan 687 . . . . 5 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
91, 3efmndbas 18781 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
109eleq2i 2820 . . . . . . . 8 (𝑥 ∈ (Base‘𝑀) ↔ 𝑥 ∈ (𝐴m 𝐴))
1110biimpi 216 . . . . . . 7 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴))
1211a1i 11 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴)))
1312ssrdv 3949 . . . . 5 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝐴m 𝐴))
14 resttopon 23082 . . . . 5 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝑀) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
158, 13, 14syl2anc 584 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
164, 15eqeltrrd 2829 . . 3 (𝐴𝑉 → (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
17 eqid 2729 . . . 4 (TopOpen‘𝑀) = (TopOpen‘𝑀)
183, 17istps 22855 . . 3 (𝑀 ∈ TopSp ↔ (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
1916, 18sylibr 234 . 2 (𝐴𝑉𝑀 ∈ TopSp)
20 eqid 2729 . . . . . . 7 (+g𝑀) = (+g𝑀)
211, 3, 20efmndplusg 18790 . . . . . 6 (+g𝑀) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦))
22 eqid 2729 . . . . . . 7 ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))
23 distop 22916 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
24 eqid 2729 . . . . . . . . 9 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
2524xkotopon 23521 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
2623, 23, 25syl2anc 584 . . . . . . 7 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
27 cndis 23212 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
285, 27mpdan 687 . . . . . . . 8 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
2913, 28sseqtrrd 3981 . . . . . . 7 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
30 disllycmp 23419 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ Locally Comp)
31 llynlly 23398 . . . . . . . . 9 (𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
3230, 31syl 17 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
33 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦))
3433xkococn 23581 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3523, 32, 23, 34syl3anc 1373 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3622, 26, 29, 22, 26, 29, 35cnmpt2res 23598 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦)) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3721, 36eqeltrid 2832 . . . . 5 (𝐴𝑉 → (+g𝑀) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
38 xkopt 23576 . . . . . . . . . 10 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
3923, 38mpancom 688 . . . . . . . . 9 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4039oveq1d 7384 . . . . . . . 8 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)))
4140, 4eqtrd 2764 . . . . . . 7 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
4241, 41oveq12d 7387 . . . . . 6 (𝐴𝑉 → (((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = ((TopOpen‘𝑀) ×t (TopOpen‘𝑀)))
4342oveq1d 7384 . . . . 5 (𝐴𝑉 → ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4437, 43eleqtrd 2830 . . . 4 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
45 vex 3448 . . . . . . . . . . 11 𝑥 ∈ V
46 vex 3448 . . . . . . . . . . 11 𝑦 ∈ V
4745, 46coex 7886 . . . . . . . . . 10 (𝑥𝑦) ∈ V
4821, 47fnmpoi 8028 . . . . . . . . 9 (+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀))
49 eqid 2729 . . . . . . . . . 10 (+𝑓𝑀) = (+𝑓𝑀)
503, 20, 49plusfeq 18558 . . . . . . . . 9 ((+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀)) → (+𝑓𝑀) = (+g𝑀))
5148, 50ax-mp 5 . . . . . . . 8 (+𝑓𝑀) = (+g𝑀)
5251eqcomi 2738 . . . . . . 7 (+g𝑀) = (+𝑓𝑀)
533, 52mndplusf 18662 . . . . . 6 (𝑀 ∈ Mnd → (+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀))
54 frn 6677 . . . . . 6 ((+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀) → ran (+g𝑀) ⊆ (Base‘𝑀))
552, 53, 543syl 18 . . . . 5 (𝐴𝑉 → ran (+g𝑀) ⊆ (Base‘𝑀))
56 cnrest2 23207 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g𝑀) ⊆ (Base‘𝑀) ∧ (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5726, 55, 29, 56syl3anc 1373 . . . 4 (𝐴𝑉 → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5844, 57mpbid 232 . . 3 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))))
5941oveq2d 7385 . . 3 (𝐴𝑉 → (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6058, 59eleqtrd 2830 . 2 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6152, 17istmd 23995 . 2 (𝑀 ∈ TopMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀))))
622, 19, 60, 61syl3anbrc 1344 1 (𝐴𝑉𝑀 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559  {csn 4585   × cxp 5629  ran crn 5632  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776  Basecbs 17156  +gcplusg 17197  t crest 17360  TopOpenctopn 17361  tcpt 17378  +𝑓cplusf 18547  Mndcmnd 18644  EndoFMndcefmnd 18778  Topctop 22814  TopOnctopon 22831  TopSpctps 22853   Cn ccn 23145  Compccmp 23307  Locally clly 23385  𝑛-Locally cnlly 23386   ×t ctx 23481  ko cxko 23482  TopMndctmd 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-uz 12772  df-fz 13447  df-struct 17094  df-slot 17129  df-ndx 17141  df-base 17157  df-plusg 17210  df-tset 17216  df-rest 17362  df-topn 17363  df-topgen 17383  df-pt 17384  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-efmnd 18779  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-ntr 22941  df-nei 23019  df-cn 23148  df-cmp 23308  df-lly 23387  df-nlly 23388  df-tx 23483  df-xko 23484  df-tmd 23993
This theorem is referenced by:  symgtgp  24027
  Copyright terms: Public domain W3C validator