| Step | Hyp | Ref
| Expression |
| 1 | | efmndtmd.g |
. . 3
⊢ 𝑀 = (EndoFMnd‘𝐴) |
| 2 | 1 | efmndmnd 18872 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 4 | 1, 3 | efmndtopn 18866 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝑀)) =
(TopOpen‘𝑀)) |
| 5 | | distopon 22940 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) |
| 6 | | eqid 2736 |
. . . . . . 7
⊢
(∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) |
| 7 | 6 | pttoponconst 23540 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴))) |
| 8 | 5, 7 | mpdan 687 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴))) |
| 9 | 1, 3 | efmndbas 18854 |
. . . . . . . . 9
⊢
(Base‘𝑀) =
(𝐴 ↑m 𝐴) |
| 10 | 9 | eleq2i 2827 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝑀) ↔ 𝑥 ∈ (𝐴 ↑m 𝐴)) |
| 11 | 10 | biimpi 216 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴 ↑m 𝐴)) |
| 12 | 11 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴 ↑m 𝐴))) |
| 13 | 12 | ssrdv 3969 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (Base‘𝑀) ⊆ (𝐴 ↑m 𝐴)) |
| 14 | | resttopon 23104 |
. . . . 5
⊢
(((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴 ↑m 𝐴)) ∧ (Base‘𝑀) ⊆ (𝐴 ↑m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝑀)) ∈
(TopOn‘(Base‘𝑀))) |
| 15 | 8, 13, 14 | syl2anc 584 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t
(Base‘𝑀)) ∈
(TopOn‘(Base‘𝑀))) |
| 16 | 4, 15 | eqeltrrd 2836 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀))) |
| 17 | | eqid 2736 |
. . . 4
⊢
(TopOpen‘𝑀) =
(TopOpen‘𝑀) |
| 18 | 3, 17 | istps 22877 |
. . 3
⊢ (𝑀 ∈ TopSp ↔
(TopOpen‘𝑀) ∈
(TopOn‘(Base‘𝑀))) |
| 19 | 16, 18 | sylibr 234 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ TopSp) |
| 20 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 21 | 1, 3, 20 | efmndplusg 18863 |
. . . . . 6
⊢
(+g‘𝑀) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥 ∘ 𝑦)) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢
((𝒫 𝐴
↑ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((𝒫 𝐴 ↑ko 𝒫
𝐴) ↾t
(Base‘𝑀)) |
| 23 | | distop 22938 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
| 24 | | eqid 2736 |
. . . . . . . . 9
⊢
(𝒫 𝐴
↑ko 𝒫 𝐴) = (𝒫 𝐴 ↑ko 𝒫 𝐴) |
| 25 | 24 | xkotopon 23543 |
. . . . . . . 8
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐴
∈ Top) → (𝒫 𝐴 ↑ko 𝒫 𝐴) ∈ (TopOn‘(𝒫
𝐴 Cn 𝒫 𝐴))) |
| 26 | 23, 23, 25 | syl2anc 584 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ↑ko 𝒫 𝐴) ∈ (TopOn‘(𝒫
𝐴 Cn 𝒫 𝐴))) |
| 27 | | cndis 23234 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴 ↑m 𝐴)) |
| 28 | 5, 27 | mpdan 687 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴 ↑m 𝐴)) |
| 29 | 13, 28 | sseqtrrd 4001 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) |
| 30 | | disllycmp 23441 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Locally Comp) |
| 31 | | llynlly 23420 |
. . . . . . . . 9
⊢
(𝒫 𝐴 ∈
Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally
Comp) |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally
Comp) |
| 33 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥 ∘ 𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥 ∘ 𝑦)) |
| 34 | 33 | xkococn 23603 |
. . . . . . . 8
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐴
∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥 ∘ 𝑦)) ∈ (((𝒫 𝐴 ↑ko 𝒫 𝐴) ×t (𝒫
𝐴 ↑ko
𝒫 𝐴)) Cn (𝒫
𝐴 ↑ko
𝒫 𝐴))) |
| 35 | 23, 32, 23, 34 | syl3anc 1373 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥 ∘ 𝑦)) ∈ (((𝒫 𝐴 ↑ko 𝒫 𝐴) ×t (𝒫
𝐴 ↑ko
𝒫 𝐴)) Cn (𝒫
𝐴 ↑ko
𝒫 𝐴))) |
| 36 | 22, 26, 29, 22, 26, 29, 35 | cnmpt2res 23620 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥 ∘ 𝑦)) ∈ ((((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀))
×t ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀))) Cn
(𝒫 𝐴
↑ko 𝒫 𝐴))) |
| 37 | 21, 36 | eqeltrid 2839 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (+g‘𝑀) ∈ ((((𝒫 𝐴 ↑ko 𝒫
𝐴) ↾t
(Base‘𝑀))
×t ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀))) Cn
(𝒫 𝐴
↑ko 𝒫 𝐴))) |
| 38 | | xkopt 23598 |
. . . . . . . . . 10
⊢
((𝒫 𝐴 ∈
Top ∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 ↑ko 𝒫
𝐴) =
(∏t‘(𝐴 × {𝒫 𝐴}))) |
| 39 | 23, 38 | mpancom 688 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ↑ko 𝒫 𝐴) =
(∏t‘(𝐴 × {𝒫 𝐴}))) |
| 40 | 39 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀)) =
((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀))) |
| 41 | 40, 4 | eqtrd 2771 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀)) =
(TopOpen‘𝑀)) |
| 42 | 41, 41 | oveq12d 7428 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀))
×t ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀))) =
((TopOpen‘𝑀)
×t (TopOpen‘𝑀))) |
| 43 | 42 | oveq1d 7425 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀))
×t ((𝒫 𝐴 ↑ko 𝒫 𝐴) ↾t
(Base‘𝑀))) Cn
(𝒫 𝐴
↑ko 𝒫 𝐴)) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴 ↑ko 𝒫
𝐴))) |
| 44 | 37, 43 | eleqtrd 2837 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (+g‘𝑀) ∈ (((TopOpen‘𝑀) ×t
(TopOpen‘𝑀)) Cn
(𝒫 𝐴
↑ko 𝒫 𝐴))) |
| 45 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 46 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 47 | 45, 46 | coex 7931 |
. . . . . . . . . 10
⊢ (𝑥 ∘ 𝑦) ∈ V |
| 48 | 21, 47 | fnmpoi 8074 |
. . . . . . . . 9
⊢
(+g‘𝑀) Fn ((Base‘𝑀) × (Base‘𝑀)) |
| 49 | | eqid 2736 |
. . . . . . . . . 10
⊢
(+𝑓‘𝑀) = (+𝑓‘𝑀) |
| 50 | 3, 20, 49 | plusfeq 18631 |
. . . . . . . . 9
⊢
((+g‘𝑀) Fn ((Base‘𝑀) × (Base‘𝑀)) → (+𝑓‘𝑀) = (+g‘𝑀)) |
| 51 | 48, 50 | ax-mp 5 |
. . . . . . . 8
⊢
(+𝑓‘𝑀) = (+g‘𝑀) |
| 52 | 51 | eqcomi 2745 |
. . . . . . 7
⊢
(+g‘𝑀) = (+𝑓‘𝑀) |
| 53 | 3, 52 | mndplusf 18735 |
. . . . . 6
⊢ (𝑀 ∈ Mnd →
(+g‘𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀)) |
| 54 | | frn 6718 |
. . . . . 6
⊢
((+g‘𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀) → ran (+g‘𝑀) ⊆ (Base‘𝑀)) |
| 55 | 2, 53, 54 | 3syl 18 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ran (+g‘𝑀) ⊆ (Base‘𝑀)) |
| 56 | | cnrest2 23229 |
. . . . 5
⊢
(((𝒫 𝐴
↑ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g‘𝑀) ⊆ (Base‘𝑀) ∧ (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g‘𝑀) ∈ (((TopOpen‘𝑀) ×t
(TopOpen‘𝑀)) Cn
(𝒫 𝐴
↑ko 𝒫 𝐴)) ↔ (+g‘𝑀) ∈ (((TopOpen‘𝑀) ×t
(TopOpen‘𝑀)) Cn
((𝒫 𝐴
↑ko 𝒫 𝐴) ↾t (Base‘𝑀))))) |
| 57 | 26, 55, 29, 56 | syl3anc 1373 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((+g‘𝑀) ∈ (((TopOpen‘𝑀) ×t
(TopOpen‘𝑀)) Cn
(𝒫 𝐴
↑ko 𝒫 𝐴)) ↔ (+g‘𝑀) ∈ (((TopOpen‘𝑀) ×t
(TopOpen‘𝑀)) Cn
((𝒫 𝐴
↑ko 𝒫 𝐴) ↾t (Base‘𝑀))))) |
| 58 | 44, 57 | mpbid 232 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (+g‘𝑀) ∈ (((TopOpen‘𝑀) ×t
(TopOpen‘𝑀)) Cn
((𝒫 𝐴
↑ko 𝒫 𝐴) ↾t (Base‘𝑀)))) |
| 59 | 41 | oveq2d 7426 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴 ↑ko 𝒫
𝐴) ↾t
(Base‘𝑀))) =
(((TopOpen‘𝑀)
×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀))) |
| 60 | 58, 59 | eleqtrd 2837 |
. 2
⊢ (𝐴 ∈ 𝑉 → (+g‘𝑀) ∈ (((TopOpen‘𝑀) ×t
(TopOpen‘𝑀)) Cn
(TopOpen‘𝑀))) |
| 61 | 52, 17 | istmd 24017 |
. 2
⊢ (𝑀 ∈ TopMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧
(+g‘𝑀)
∈ (((TopOpen‘𝑀)
×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))) |
| 62 | 2, 19, 60, 61 | syl3anbrc 1344 |
1
⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd) |