MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndtmd Structured version   Visualization version   GIF version

Theorem efmndtmd 22709
Description: The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 22714. (Contributed by AV, 23-Feb-2024.)
Hypothesis
Ref Expression
efmndtmd.g 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndtmd (𝐴𝑉𝑀 ∈ TopMnd)

Proof of Theorem efmndtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmndtmd.g . . 3 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18054 . 2 (𝐴𝑉𝑀 ∈ Mnd)
3 eqid 2821 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
41, 3efmndtopn 18048 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
5 distopon 21605 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
6 eqid 2821 . . . . . . 7 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
76pttoponconst 22205 . . . . . 6 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
85, 7mpdan 685 . . . . 5 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
91, 3efmndbas 18036 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
109eleq2i 2904 . . . . . . . 8 (𝑥 ∈ (Base‘𝑀) ↔ 𝑥 ∈ (𝐴m 𝐴))
1110biimpi 218 . . . . . . 7 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴))
1211a1i 11 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴)))
1312ssrdv 3973 . . . . 5 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝐴m 𝐴))
14 resttopon 21769 . . . . 5 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝑀) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
158, 13, 14syl2anc 586 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
164, 15eqeltrrd 2914 . . 3 (𝐴𝑉 → (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
17 eqid 2821 . . . 4 (TopOpen‘𝑀) = (TopOpen‘𝑀)
183, 17istps 21542 . . 3 (𝑀 ∈ TopSp ↔ (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
1916, 18sylibr 236 . 2 (𝐴𝑉𝑀 ∈ TopSp)
20 eqid 2821 . . . . . . 7 (+g𝑀) = (+g𝑀)
211, 3, 20efmndplusg 18045 . . . . . 6 (+g𝑀) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦))
22 eqid 2821 . . . . . . 7 ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))
23 distop 21603 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
24 eqid 2821 . . . . . . . . 9 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
2524xkotopon 22208 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
2623, 23, 25syl2anc 586 . . . . . . 7 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
27 cndis 21899 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
285, 27mpdan 685 . . . . . . . 8 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
2913, 28sseqtrrd 4008 . . . . . . 7 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
30 disllycmp 22106 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ Locally Comp)
31 llynlly 22085 . . . . . . . . 9 (𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
3230, 31syl 17 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
33 eqid 2821 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦))
3433xkococn 22268 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3523, 32, 23, 34syl3anc 1367 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3622, 26, 29, 22, 26, 29, 35cnmpt2res 22285 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦)) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3721, 36eqeltrid 2917 . . . . 5 (𝐴𝑉 → (+g𝑀) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
38 xkopt 22263 . . . . . . . . . 10 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
3923, 38mpancom 686 . . . . . . . . 9 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4039oveq1d 7171 . . . . . . . 8 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)))
4140, 4eqtrd 2856 . . . . . . 7 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
4241, 41oveq12d 7174 . . . . . 6 (𝐴𝑉 → (((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = ((TopOpen‘𝑀) ×t (TopOpen‘𝑀)))
4342oveq1d 7171 . . . . 5 (𝐴𝑉 → ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4437, 43eleqtrd 2915 . . . 4 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
45 vex 3497 . . . . . . . . . . 11 𝑥 ∈ V
46 vex 3497 . . . . . . . . . . 11 𝑦 ∈ V
4745, 46coex 7635 . . . . . . . . . 10 (𝑥𝑦) ∈ V
4821, 47fnmpoi 7768 . . . . . . . . 9 (+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀))
49 eqid 2821 . . . . . . . . . 10 (+𝑓𝑀) = (+𝑓𝑀)
503, 20, 49plusfeq 17860 . . . . . . . . 9 ((+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀)) → (+𝑓𝑀) = (+g𝑀))
5148, 50ax-mp 5 . . . . . . . 8 (+𝑓𝑀) = (+g𝑀)
5251eqcomi 2830 . . . . . . 7 (+g𝑀) = (+𝑓𝑀)
533, 52mndplusf 17929 . . . . . 6 (𝑀 ∈ Mnd → (+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀))
54 frn 6520 . . . . . 6 ((+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀) → ran (+g𝑀) ⊆ (Base‘𝑀))
552, 53, 543syl 18 . . . . 5 (𝐴𝑉 → ran (+g𝑀) ⊆ (Base‘𝑀))
56 cnrest2 21894 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g𝑀) ⊆ (Base‘𝑀) ∧ (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5726, 55, 29, 56syl3anc 1367 . . . 4 (𝐴𝑉 → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5844, 57mpbid 234 . . 3 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))))
5941oveq2d 7172 . . 3 (𝐴𝑉 → (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6058, 59eleqtrd 2915 . 2 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6152, 17istmd 22682 . 2 (𝑀 ∈ TopMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀))))
622, 19, 60, 61syl3anbrc 1339 1 (𝐴𝑉𝑀 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wss 3936  𝒫 cpw 4539  {csn 4567   × cxp 5553  ran crn 5556  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  Basecbs 16483  +gcplusg 16565  t crest 16694  TopOpenctopn 16695  tcpt 16712  +𝑓cplusf 17849  Mndcmnd 17911  EndoFMndcefmnd 18033  Topctop 21501  TopOnctopon 21518  TopSpctps 21540   Cn ccn 21832  Compccmp 21994  Locally clly 22072  𝑛-Locally cnlly 22073   ×t ctx 22168  ko cxko 22169  TopMndctmd 22678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-tset 16584  df-rest 16696  df-topn 16697  df-topgen 16717  df-pt 16718  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-efmnd 18034  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-ntr 21628  df-nei 21706  df-cn 21835  df-cmp 21995  df-lly 22074  df-nlly 22075  df-tx 22170  df-xko 22171  df-tmd 22680
This theorem is referenced by:  symgtgp  22714
  Copyright terms: Public domain W3C validator