MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndtmd Structured version   Visualization version   GIF version

Theorem efmndtmd 23160
Description: The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 23165. (Contributed by AV, 23-Feb-2024.)
Hypothesis
Ref Expression
efmndtmd.g 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndtmd (𝐴𝑉𝑀 ∈ TopMnd)

Proof of Theorem efmndtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmndtmd.g . . 3 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18443 . 2 (𝐴𝑉𝑀 ∈ Mnd)
3 eqid 2738 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
41, 3efmndtopn 18437 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
5 distopon 22055 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
6 eqid 2738 . . . . . . 7 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
76pttoponconst 22656 . . . . . 6 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
85, 7mpdan 683 . . . . 5 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
91, 3efmndbas 18425 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
109eleq2i 2830 . . . . . . . 8 (𝑥 ∈ (Base‘𝑀) ↔ 𝑥 ∈ (𝐴m 𝐴))
1110biimpi 215 . . . . . . 7 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴))
1211a1i 11 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴)))
1312ssrdv 3923 . . . . 5 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝐴m 𝐴))
14 resttopon 22220 . . . . 5 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝑀) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
158, 13, 14syl2anc 583 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
164, 15eqeltrrd 2840 . . 3 (𝐴𝑉 → (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
17 eqid 2738 . . . 4 (TopOpen‘𝑀) = (TopOpen‘𝑀)
183, 17istps 21991 . . 3 (𝑀 ∈ TopSp ↔ (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
1916, 18sylibr 233 . 2 (𝐴𝑉𝑀 ∈ TopSp)
20 eqid 2738 . . . . . . 7 (+g𝑀) = (+g𝑀)
211, 3, 20efmndplusg 18434 . . . . . 6 (+g𝑀) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦))
22 eqid 2738 . . . . . . 7 ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))
23 distop 22053 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
24 eqid 2738 . . . . . . . . 9 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
2524xkotopon 22659 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
2623, 23, 25syl2anc 583 . . . . . . 7 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
27 cndis 22350 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
285, 27mpdan 683 . . . . . . . 8 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
2913, 28sseqtrrd 3958 . . . . . . 7 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
30 disllycmp 22557 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ Locally Comp)
31 llynlly 22536 . . . . . . . . 9 (𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
3230, 31syl 17 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
33 eqid 2738 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦))
3433xkococn 22719 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3523, 32, 23, 34syl3anc 1369 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3622, 26, 29, 22, 26, 29, 35cnmpt2res 22736 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦)) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3721, 36eqeltrid 2843 . . . . 5 (𝐴𝑉 → (+g𝑀) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
38 xkopt 22714 . . . . . . . . . 10 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
3923, 38mpancom 684 . . . . . . . . 9 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4039oveq1d 7270 . . . . . . . 8 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)))
4140, 4eqtrd 2778 . . . . . . 7 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
4241, 41oveq12d 7273 . . . . . 6 (𝐴𝑉 → (((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = ((TopOpen‘𝑀) ×t (TopOpen‘𝑀)))
4342oveq1d 7270 . . . . 5 (𝐴𝑉 → ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4437, 43eleqtrd 2841 . . . 4 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
45 vex 3426 . . . . . . . . . . 11 𝑥 ∈ V
46 vex 3426 . . . . . . . . . . 11 𝑦 ∈ V
4745, 46coex 7751 . . . . . . . . . 10 (𝑥𝑦) ∈ V
4821, 47fnmpoi 7883 . . . . . . . . 9 (+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀))
49 eqid 2738 . . . . . . . . . 10 (+𝑓𝑀) = (+𝑓𝑀)
503, 20, 49plusfeq 18249 . . . . . . . . 9 ((+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀)) → (+𝑓𝑀) = (+g𝑀))
5148, 50ax-mp 5 . . . . . . . 8 (+𝑓𝑀) = (+g𝑀)
5251eqcomi 2747 . . . . . . 7 (+g𝑀) = (+𝑓𝑀)
533, 52mndplusf 18318 . . . . . 6 (𝑀 ∈ Mnd → (+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀))
54 frn 6591 . . . . . 6 ((+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀) → ran (+g𝑀) ⊆ (Base‘𝑀))
552, 53, 543syl 18 . . . . 5 (𝐴𝑉 → ran (+g𝑀) ⊆ (Base‘𝑀))
56 cnrest2 22345 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g𝑀) ⊆ (Base‘𝑀) ∧ (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5726, 55, 29, 56syl3anc 1369 . . . 4 (𝐴𝑉 → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5844, 57mpbid 231 . . 3 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))))
5941oveq2d 7271 . . 3 (𝐴𝑉 → (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6058, 59eleqtrd 2841 . 2 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6152, 17istmd 23133 . 2 (𝑀 ∈ TopMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀))))
622, 19, 60, 61syl3anbrc 1341 1 (𝐴𝑉𝑀 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530  {csn 4558   × cxp 5578  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Basecbs 16840  +gcplusg 16888  t crest 17048  TopOpenctopn 17049  tcpt 17066  +𝑓cplusf 18238  Mndcmnd 18300  EndoFMndcefmnd 18422  Topctop 21950  TopOnctopon 21967  TopSpctps 21989   Cn ccn 22283  Compccmp 22445  Locally clly 22523  𝑛-Locally cnlly 22524   ×t ctx 22619  ko cxko 22620  TopMndctmd 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-tset 16907  df-rest 17050  df-topn 17051  df-topgen 17071  df-pt 17072  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-efmnd 18423  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-cmp 22446  df-lly 22525  df-nlly 22526  df-tx 22621  df-xko 22622  df-tmd 23131
This theorem is referenced by:  symgtgp  23165
  Copyright terms: Public domain W3C validator