MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndtmd Structured version   Visualization version   GIF version

Theorem efmndtmd 23452
Description: The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 23457. (Contributed by AV, 23-Feb-2024.)
Hypothesis
Ref Expression
efmndtmd.g 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndtmd (𝐴𝑉𝑀 ∈ TopMnd)

Proof of Theorem efmndtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmndtmd.g . . 3 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18699 . 2 (𝐴𝑉𝑀 ∈ Mnd)
3 eqid 2736 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
41, 3efmndtopn 18693 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
5 distopon 22347 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
6 eqid 2736 . . . . . . 7 (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴}))
76pttoponconst 22948 . . . . . 6 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
85, 7mpdan 685 . . . . 5 (𝐴𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)))
91, 3efmndbas 18681 . . . . . . . . 9 (Base‘𝑀) = (𝐴m 𝐴)
109eleq2i 2829 . . . . . . . 8 (𝑥 ∈ (Base‘𝑀) ↔ 𝑥 ∈ (𝐴m 𝐴))
1110biimpi 215 . . . . . . 7 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴))
1211a1i 11 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ (𝐴m 𝐴)))
1312ssrdv 3950 . . . . 5 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝐴m 𝐴))
14 resttopon 22512 . . . . 5 (((∏t‘(𝐴 × {𝒫 𝐴})) ∈ (TopOn‘(𝐴m 𝐴)) ∧ (Base‘𝑀) ⊆ (𝐴m 𝐴)) → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
158, 13, 14syl2anc 584 . . . 4 (𝐴𝑉 → ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)) ∈ (TopOn‘(Base‘𝑀)))
164, 15eqeltrrd 2839 . . 3 (𝐴𝑉 → (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
17 eqid 2736 . . . 4 (TopOpen‘𝑀) = (TopOpen‘𝑀)
183, 17istps 22283 . . 3 (𝑀 ∈ TopSp ↔ (TopOpen‘𝑀) ∈ (TopOn‘(Base‘𝑀)))
1916, 18sylibr 233 . 2 (𝐴𝑉𝑀 ∈ TopSp)
20 eqid 2736 . . . . . . 7 (+g𝑀) = (+g𝑀)
211, 3, 20efmndplusg 18690 . . . . . 6 (+g𝑀) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦))
22 eqid 2736 . . . . . . 7 ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))
23 distop 22345 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
24 eqid 2736 . . . . . . . . 9 (𝒫 𝐴ko 𝒫 𝐴) = (𝒫 𝐴ko 𝒫 𝐴)
2524xkotopon 22951 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top) → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
2623, 23, 25syl2anc 584 . . . . . . 7 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)))
27 cndis 22642 . . . . . . . . 9 ((𝐴𝑉 ∧ 𝒫 𝐴 ∈ (TopOn‘𝐴)) → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
285, 27mpdan 685 . . . . . . . 8 (𝐴𝑉 → (𝒫 𝐴 Cn 𝒫 𝐴) = (𝐴m 𝐴))
2913, 28sseqtrrd 3985 . . . . . . 7 (𝐴𝑉 → (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴))
30 disllycmp 22849 . . . . . . . . 9 (𝐴𝑉 → 𝒫 𝐴 ∈ Locally Comp)
31 llynlly 22828 . . . . . . . . 9 (𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
3230, 31syl 17 . . . . . . . 8 (𝐴𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp)
33 eqid 2736 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦))
3433xkococn 23011 . . . . . . . 8 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3523, 32, 23, 34syl3anc 1371 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ (𝒫 𝐴 Cn 𝒫 𝐴), 𝑦 ∈ (𝒫 𝐴 Cn 𝒫 𝐴) ↦ (𝑥𝑦)) ∈ (((𝒫 𝐴ko 𝒫 𝐴) ×t (𝒫 𝐴ko 𝒫 𝐴)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3622, 26, 29, 22, 26, 29, 35cnmpt2res 23028 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑥𝑦)) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
3721, 36eqeltrid 2842 . . . . 5 (𝐴𝑉 → (+g𝑀) ∈ ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)))
38 xkopt 23006 . . . . . . . . . 10 ((𝒫 𝐴 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
3923, 38mpancom 686 . . . . . . . . 9 (𝐴𝑉 → (𝒫 𝐴ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝒫 𝐴})))
4039oveq1d 7372 . . . . . . . 8 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = ((∏t‘(𝐴 × {𝒫 𝐴})) ↾t (Base‘𝑀)))
4140, 4eqtrd 2776 . . . . . . 7 (𝐴𝑉 → ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) = (TopOpen‘𝑀))
4241, 41oveq12d 7375 . . . . . 6 (𝐴𝑉 → (((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = ((TopOpen‘𝑀) ×t (TopOpen‘𝑀)))
4342oveq1d 7372 . . . . 5 (𝐴𝑉 → ((((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)) ×t ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) Cn (𝒫 𝐴ko 𝒫 𝐴)) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
4437, 43eleqtrd 2840 . . . 4 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)))
45 vex 3449 . . . . . . . . . . 11 𝑥 ∈ V
46 vex 3449 . . . . . . . . . . 11 𝑦 ∈ V
4745, 46coex 7867 . . . . . . . . . 10 (𝑥𝑦) ∈ V
4821, 47fnmpoi 8002 . . . . . . . . 9 (+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀))
49 eqid 2736 . . . . . . . . . 10 (+𝑓𝑀) = (+𝑓𝑀)
503, 20, 49plusfeq 18505 . . . . . . . . 9 ((+g𝑀) Fn ((Base‘𝑀) × (Base‘𝑀)) → (+𝑓𝑀) = (+g𝑀))
5148, 50ax-mp 5 . . . . . . . 8 (+𝑓𝑀) = (+g𝑀)
5251eqcomi 2745 . . . . . . 7 (+g𝑀) = (+𝑓𝑀)
533, 52mndplusf 18574 . . . . . 6 (𝑀 ∈ Mnd → (+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀))
54 frn 6675 . . . . . 6 ((+g𝑀):((Base‘𝑀) × (Base‘𝑀))⟶(Base‘𝑀) → ran (+g𝑀) ⊆ (Base‘𝑀))
552, 53, 543syl 18 . . . . 5 (𝐴𝑉 → ran (+g𝑀) ⊆ (Base‘𝑀))
56 cnrest2 22637 . . . . 5 (((𝒫 𝐴ko 𝒫 𝐴) ∈ (TopOn‘(𝒫 𝐴 Cn 𝒫 𝐴)) ∧ ran (+g𝑀) ⊆ (Base‘𝑀) ∧ (Base‘𝑀) ⊆ (𝒫 𝐴 Cn 𝒫 𝐴)) → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5726, 55, 29, 56syl3anc 1371 . . . 4 (𝐴𝑉 → ((+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (𝒫 𝐴ko 𝒫 𝐴)) ↔ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀)))))
5844, 57mpbid 231 . . 3 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))))
5941oveq2d 7373 . . 3 (𝐴𝑉 → (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn ((𝒫 𝐴ko 𝒫 𝐴) ↾t (Base‘𝑀))) = (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6058, 59eleqtrd 2840 . 2 (𝐴𝑉 → (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀)))
6152, 17istmd 23425 . 2 (𝑀 ∈ TopMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧ (+g𝑀) ∈ (((TopOpen‘𝑀) ×t (TopOpen‘𝑀)) Cn (TopOpen‘𝑀))))
622, 19, 60, 61syl3anbrc 1343 1 (𝐴𝑉𝑀 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wss 3910  𝒫 cpw 4560  {csn 4586   × cxp 5631  ran crn 5634  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Basecbs 17083  +gcplusg 17133  t crest 17302  TopOpenctopn 17303  tcpt 17320  +𝑓cplusf 18494  Mndcmnd 18556  EndoFMndcefmnd 18678  Topctop 22242  TopOnctopon 22259  TopSpctps 22281   Cn ccn 22575  Compccmp 22737  Locally clly 22815  𝑛-Locally cnlly 22816   ×t ctx 22911  ko cxko 22912  TopMndctmd 23421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-tset 17152  df-rest 17304  df-topn 17305  df-topgen 17325  df-pt 17326  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-efmnd 18679  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-nei 22449  df-cn 22578  df-cmp 22738  df-lly 22817  df-nlly 22818  df-tx 22913  df-xko 22914  df-tmd 23423
This theorem is referenced by:  symgtgp  23457
  Copyright terms: Public domain W3C validator