| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for an integral. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| itgeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| itgeq1i | ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqid 2730 | . 2 ⊢ 𝐶 = 𝐶 | |
| 3 | 1, 2 | itgeq12i 36219 | 1 ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∫citg 25539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-iota 6433 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13901 df-sum 15586 df-itg 25544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |