| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for an integral. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| itgeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| itgeq1i | ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqid 2731 | . 2 ⊢ 𝐶 = 𝐶 | |
| 3 | 1, 2 | itgeq12i 36257 | 1 ⊢ ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∫citg 25552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-iota 6443 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-seq 13915 df-sum 15600 df-itg 25557 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |