Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgeq2i Structured version   Visualization version   GIF version

Theorem itgeq2i 36221
Description: Equality inference for an integral. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
itgeq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
itgeq2i 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥

Proof of Theorem itgeq2i
StepHypRef Expression
1 eqid 2730 . 2 𝐴 = 𝐴
2 itgeq2i.1 . 2 𝐵 = 𝐶
31, 2itgeq12i 36219 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  citg 25539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-iota 6433  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seq 13901  df-sum 15586  df-itg 25544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator