Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgeq2i Structured version   Visualization version   GIF version

Theorem itgeq2i 36155
Description: Equality inference for an integral. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
itgeq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
itgeq2i 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥

Proof of Theorem itgeq2i
StepHypRef Expression
1 eqid 2734 . 2 𝐴 = 𝐴
2 itgeq2i.1 . 2 𝐵 = 𝐶
31, 2itgeq12i 36153 1 𝐴𝐵 d𝑥 = ∫𝐴𝐶 d𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  citg 25558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-xp 5658  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-iota 6481  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-seq 14010  df-sum 15692  df-itg 25563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator