MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latlej2 Structured version   Visualization version   GIF version

Theorem latlej2 18415
Description: A join's second argument is less than or equal to the join. (chub2 31444 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latlej2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))

Proof of Theorem latlej2
StepHypRef Expression
1 latlej.b . 2 𝐵 = (Base‘𝐾)
2 latlej.l . 2 = (le‘𝐾)
3 latlej.j . 2 = (join‘𝐾)
4 simp1 1136 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 simp2 1137 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
6 simp3 1138 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
7 eqid 2730 . . . 4 (meet‘𝐾) = (meet‘𝐾)
81, 3, 7, 4, 5, 6latcl2 18402 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom (meet‘𝐾)))
98simpld 494 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
101, 2, 3, 4, 5, 6, 9lejoin2 18351 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  Latclat 18397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-lub 18312  df-join 18314  df-lat 18398
This theorem is referenced by:  latleeqj1  18417  latjlej1  18419  latnlej  18422  latnlej2  18425  latjass  18449  lubun  18481  oldmm1  39217  cmtcomlemN  39248  cmtbr4N  39255  cvlexchb1  39330  cvlatexch1  39336  cvrval5  39416  2llnjaN  39567  4atlem3b  39599  2lplnja  39620  dalem5  39668  dalem17  39681  dalem39  39712  dalem43  39716  elpaddn0  39801  pmapjoin  39853  dalawlem2  39873  dalawlem11  39882  dalawlem12  39883  lautj  40094  trljat2  40168  cdleme0cq  40216  cdleme1  40228  cdleme3  40238  cdleme5  40241  cdleme7ga  40249  cdleme10  40255  cdleme15b  40276  cdleme16b  40280  cdleme20k  40320  cdleme22e  40345  cdleme22eALTN  40346  cdleme23c  40352  cdleme28a  40371  cdleme32e  40446  cdleme35a  40449  cdlemg4c  40613  cdlemg6c  40621  trlcolem  40727  cdlemi1  40819  dia2dimlem2  41066  cdlemm10N  41119  dihord2pre2  41227  dihord5apre  41263  dihjatc1  41312
  Copyright terms: Public domain W3C validator