MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latlej2 Structured version   Visualization version   GIF version

Theorem latlej2 18506
Description: A join's second argument is less than or equal to the join. (chub2 31536 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latlej2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))

Proof of Theorem latlej2
StepHypRef Expression
1 latlej.b . 2 𝐵 = (Base‘𝐾)
2 latlej.l . 2 = (le‘𝐾)
3 latlej.j . 2 = (join‘𝐾)
4 simp1 1135 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 simp2 1136 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
6 simp3 1137 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
7 eqid 2734 . . . 4 (meet‘𝐾) = (meet‘𝐾)
81, 3, 7, 4, 5, 6latcl2 18493 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑋, 𝑌⟩ ∈ dom (meet‘𝐾)))
98simpld 494 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
101, 2, 3, 4, 5, 6, 9lejoin2 18442 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1536  wcel 2105  cop 4636   class class class wbr 5147  dom cdm 5688  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  Latclat 18488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-lub 18403  df-join 18405  df-lat 18489
This theorem is referenced by:  latleeqj1  18508  latjlej1  18510  latnlej  18513  latnlej2  18516  latjass  18540  lubun  18572  oldmm1  39198  cmtcomlemN  39229  cmtbr4N  39236  cvlexchb1  39311  cvlatexch1  39317  cvrval5  39397  2llnjaN  39548  4atlem3b  39580  2lplnja  39601  dalem5  39649  dalem17  39662  dalem39  39693  dalem43  39697  elpaddn0  39782  pmapjoin  39834  dalawlem2  39854  dalawlem11  39863  dalawlem12  39864  lautj  40075  trljat2  40149  cdleme0cq  40197  cdleme1  40209  cdleme3  40219  cdleme5  40222  cdleme7ga  40230  cdleme10  40236  cdleme15b  40257  cdleme16b  40261  cdleme20k  40301  cdleme22e  40326  cdleme22eALTN  40327  cdleme23c  40333  cdleme28a  40352  cdleme32e  40427  cdleme35a  40430  cdlemg4c  40594  cdlemg6c  40602  trlcolem  40708  cdlemi1  40800  dia2dimlem2  41047  cdlemm10N  41100  dihord2pre2  41208  dihord5apre  41244  dihjatc1  41293
  Copyright terms: Public domain W3C validator