Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latlej2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. (chub2 29870 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latlej2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | simp1 1135 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | 1, 3, 7, 4, 5, 6 | latcl2 18154 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
9 | 8 | simpld 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lejoin2 18103 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-lub 18064 df-join 18066 df-lat 18150 |
This theorem is referenced by: latleeqj1 18169 latjlej1 18171 latnlej 18174 latnlej2 18177 latjass 18201 lubun 18233 oldmm1 37231 cmtcomlemN 37262 cmtbr4N 37269 cvlexchb1 37344 cvlatexch1 37350 cvrval5 37429 2llnjaN 37580 4atlem3b 37612 2lplnja 37633 dalem5 37681 dalem17 37694 dalem39 37725 dalem43 37729 elpaddn0 37814 pmapjoin 37866 dalawlem2 37886 dalawlem11 37895 dalawlem12 37896 lautj 38107 trljat2 38181 cdleme0cq 38229 cdleme1 38241 cdleme3 38251 cdleme5 38254 cdleme7ga 38262 cdleme10 38268 cdleme15b 38289 cdleme16b 38293 cdleme20k 38333 cdleme22e 38358 cdleme22eALTN 38359 cdleme23c 38365 cdleme28a 38384 cdleme32e 38459 cdleme35a 38462 cdlemg4c 38626 cdlemg6c 38634 trlcolem 38740 cdlemi1 38832 dia2dimlem2 39079 cdlemm10N 39132 dihord2pre2 39240 dihord5apre 39276 dihjatc1 39325 |
Copyright terms: Public domain | W3C validator |