MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latlej2 Structured version   Visualization version   GIF version

Theorem latlej2 18406
Description: A join's second argument is less than or equal to the join. (chub2 31028 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latlej.b 𝐡 = (Baseβ€˜πΎ)
latlej.l ≀ = (leβ€˜πΎ)
latlej.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
latlej2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ≀ (𝑋 ∨ π‘Œ))

Proof of Theorem latlej2
StepHypRef Expression
1 latlej.b . 2 𝐡 = (Baseβ€˜πΎ)
2 latlej.l . 2 ≀ = (leβ€˜πΎ)
3 latlej.j . 2 ∨ = (joinβ€˜πΎ)
4 simp1 1134 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝐾 ∈ Lat)
5 simp2 1135 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
6 simp3 1136 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ∈ 𝐡)
7 eqid 2730 . . . 4 (meetβ€˜πΎ) = (meetβ€˜πΎ)
81, 3, 7, 4, 5, 6latcl2 18393 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ∧ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom (meetβ€˜πΎ)))
98simpld 493 . 2 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ )
101, 2, 3, 4, 5, 6, 9lejoin2 18342 1 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ≀ (𝑋 ∨ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βŸ¨cop 4633   class class class wbr 5147  dom cdm 5675  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  Latclat 18388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-lub 18303  df-join 18305  df-lat 18389
This theorem is referenced by:  latleeqj1  18408  latjlej1  18410  latnlej  18413  latnlej2  18416  latjass  18440  lubun  18472  oldmm1  38390  cmtcomlemN  38421  cmtbr4N  38428  cvlexchb1  38503  cvlatexch1  38509  cvrval5  38589  2llnjaN  38740  4atlem3b  38772  2lplnja  38793  dalem5  38841  dalem17  38854  dalem39  38885  dalem43  38889  elpaddn0  38974  pmapjoin  39026  dalawlem2  39046  dalawlem11  39055  dalawlem12  39056  lautj  39267  trljat2  39341  cdleme0cq  39389  cdleme1  39401  cdleme3  39411  cdleme5  39414  cdleme7ga  39422  cdleme10  39428  cdleme15b  39449  cdleme16b  39453  cdleme20k  39493  cdleme22e  39518  cdleme22eALTN  39519  cdleme23c  39525  cdleme28a  39544  cdleme32e  39619  cdleme35a  39622  cdlemg4c  39786  cdlemg6c  39794  trlcolem  39900  cdlemi1  39992  dia2dimlem2  40239  cdlemm10N  40292  dihord2pre2  40400  dihord5apre  40436  dihjatc1  40485
  Copyright terms: Public domain W3C validator