| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlej2 | Structured version Visualization version GIF version | ||
| Description: A join's second argument is less than or equal to the join. (chub2 31487 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latlej2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | 1, 3, 7, 4, 5, 6 | latcl2 18377 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lejoin2 18324 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18252 meetcmee 18253 Latclat 18372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18285 df-join 18287 df-lat 18373 |
| This theorem is referenced by: latleeqj1 18392 latjlej1 18394 latnlej 18397 latnlej2 18400 latjass 18424 lubun 18456 oldmm1 39203 cmtcomlemN 39234 cmtbr4N 39241 cvlexchb1 39316 cvlatexch1 39322 cvrval5 39402 2llnjaN 39553 4atlem3b 39585 2lplnja 39606 dalem5 39654 dalem17 39667 dalem39 39698 dalem43 39702 elpaddn0 39787 pmapjoin 39839 dalawlem2 39859 dalawlem11 39868 dalawlem12 39869 lautj 40080 trljat2 40154 cdleme0cq 40202 cdleme1 40214 cdleme3 40224 cdleme5 40227 cdleme7ga 40235 cdleme10 40241 cdleme15b 40262 cdleme16b 40266 cdleme20k 40306 cdleme22e 40331 cdleme22eALTN 40332 cdleme23c 40338 cdleme28a 40357 cdleme32e 40432 cdleme35a 40435 cdlemg4c 40599 cdlemg6c 40607 trlcolem 40713 cdlemi1 40805 dia2dimlem2 41052 cdlemm10N 41105 dihord2pre2 41213 dihord5apre 41249 dihjatc1 41298 |
| Copyright terms: Public domain | W3C validator |