| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle1 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet1 18333 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 meetcmee 18249 Latclat 18366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-glb 18282 df-meet 18284 df-lat 18367 |
| This theorem is referenced by: latleeqm1 18402 latmlem1 18404 latnlemlt 18407 latmidm 18409 latabs1 18410 latledi 18412 latmlej11 18413 oldmm1 39183 cmtbr3N 39220 cmtbr4N 39221 lecmtN 39222 cvrat4 39410 2llnmat 39491 llnmlplnN 39506 dalem3 39631 dalem27 39666 dalem54 39693 dalem55 39694 2lnat 39751 cdlema1N 39758 llnexchb2lem 39835 dalawlem1 39838 dalawlem6 39843 dalawlem11 39848 dalawlem12 39849 4atexlemunv 40033 4atexlemc 40036 4atexlemnclw 40037 4atexlemex2 40038 4atexlemcnd 40039 lautm 40061 trlval3 40154 cdlemeulpq 40187 cdleme3h 40202 cdleme4a 40206 cdleme9 40220 cdleme11g 40232 cdleme13 40239 cdleme16e 40249 cdlemednpq 40266 cdleme19b 40271 cdleme20e 40280 cdleme20j 40285 cdleme22cN 40309 cdleme22e 40311 cdleme22eALTN 40312 cdleme22g 40315 cdleme35b 40417 cdleme35f 40421 cdlemeg46vrg 40494 cdlemg11b 40609 cdlemg12f 40615 cdlemg19a 40650 cdlemg31a 40664 cdlemk12 40817 cdlemkole 40820 cdlemk12u 40839 cdlemk37 40881 dia2dimlem1 41031 dihopelvalcpre 41215 dihmeetlem1N 41257 dihglblem5apreN 41258 dihglblem2N 41261 dihmeetlem2N 41266 |
| Copyright terms: Public domain | W3C validator |