MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmle1 Structured version   Visualization version   GIF version

Theorem latmle1 18509
Description: A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latmle1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)

Proof of Theorem latmle1
StepHypRef Expression
1 latmle.b . 2 𝐵 = (Base‘𝐾)
2 latmle.l . 2 = (le‘𝐾)
3 latmle.m . 2 = (meet‘𝐾)
4 simp1 1137 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 simp2 1138 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
6 simp3 1139 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
7 eqid 2737 . . . 4 (join‘𝐾) = (join‘𝐾)
81, 7, 3, 4, 5, 6latcl2 18481 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom (join‘𝐾) ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))
98simprd 495 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
101, 2, 3, 4, 5, 6, 9lemeet1 18443 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  cop 4632   class class class wbr 5143  dom cdm 5685  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  Latclat 18476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-glb 18392  df-meet 18394  df-lat 18477
This theorem is referenced by:  latleeqm1  18512  latmlem1  18514  latnlemlt  18517  latmidm  18519  latabs1  18520  latledi  18522  latmlej11  18523  oldmm1  39218  cmtbr3N  39255  cmtbr4N  39256  lecmtN  39257  cvrat4  39445  2llnmat  39526  llnmlplnN  39541  dalem3  39666  dalem27  39701  dalem54  39728  dalem55  39729  2lnat  39786  cdlema1N  39793  llnexchb2lem  39870  dalawlem1  39873  dalawlem6  39878  dalawlem11  39883  dalawlem12  39884  4atexlemunv  40068  4atexlemc  40071  4atexlemnclw  40072  4atexlemex2  40073  4atexlemcnd  40074  lautm  40096  trlval3  40189  cdlemeulpq  40222  cdleme3h  40237  cdleme4a  40241  cdleme9  40255  cdleme11g  40267  cdleme13  40274  cdleme16e  40284  cdlemednpq  40301  cdleme19b  40306  cdleme20e  40315  cdleme20j  40320  cdleme22cN  40344  cdleme22e  40346  cdleme22eALTN  40347  cdleme22g  40350  cdleme35b  40452  cdleme35f  40456  cdlemeg46vrg  40529  cdlemg11b  40644  cdlemg12f  40650  cdlemg19a  40685  cdlemg31a  40699  cdlemk12  40852  cdlemkole  40855  cdlemk12u  40874  cdlemk37  40916  dia2dimlem1  41066  dihopelvalcpre  41250  dihmeetlem1N  41292  dihglblem5apreN  41293  dihglblem2N  41296  dihmeetlem2N  41301
  Copyright terms: Public domain W3C validator