Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmle1 | Structured version Visualization version GIF version |
Description: A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmle1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2736 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | 1, 7, 3, 4, 5, 6 | latcl2 18199 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
9 | 8 | simprd 497 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lemeet1 18161 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 〈cop 4571 class class class wbr 5081 dom cdm 5600 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 lecple 17014 joincjn 18074 meetcmee 18075 Latclat 18194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-glb 18110 df-meet 18112 df-lat 18195 |
This theorem is referenced by: latleeqm1 18230 latmlem1 18232 latnlemlt 18235 latmidm 18237 latabs1 18238 latledi 18240 latmlej11 18241 oldmm1 37273 cmtbr3N 37310 cmtbr4N 37311 lecmtN 37312 cvrat4 37499 2llnmat 37580 llnmlplnN 37595 dalem3 37720 dalem27 37755 dalem54 37782 dalem55 37783 2lnat 37840 cdlema1N 37847 llnexchb2lem 37924 dalawlem1 37927 dalawlem6 37932 dalawlem11 37937 dalawlem12 37938 4atexlemunv 38122 4atexlemc 38125 4atexlemnclw 38126 4atexlemex2 38127 4atexlemcnd 38128 lautm 38150 trlval3 38243 cdlemeulpq 38276 cdleme3h 38291 cdleme4a 38295 cdleme9 38309 cdleme11g 38321 cdleme13 38328 cdleme16e 38338 cdlemednpq 38355 cdleme19b 38360 cdleme20e 38369 cdleme20j 38374 cdleme22cN 38398 cdleme22e 38400 cdleme22eALTN 38401 cdleme22g 38404 cdleme35b 38506 cdleme35f 38510 cdlemeg46vrg 38583 cdlemg11b 38698 cdlemg12f 38704 cdlemg19a 38739 cdlemg31a 38753 cdlemk12 38906 cdlemkole 38909 cdlemk12u 38928 cdlemk37 38970 dia2dimlem1 39120 dihopelvalcpre 39304 dihmeetlem1N 39346 dihglblem5apreN 39347 dihglblem2N 39350 dihmeetlem2N 39355 |
Copyright terms: Public domain | W3C validator |