MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmle1 Structured version   Visualization version   GIF version

Theorem latmle1 18370
Description: A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latmle1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)

Proof of Theorem latmle1
StepHypRef Expression
1 latmle.b . 2 𝐵 = (Base‘𝐾)
2 latmle.l . 2 = (le‘𝐾)
3 latmle.m . 2 = (meet‘𝐾)
4 simp1 1136 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
5 simp2 1137 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
6 simp3 1138 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
7 eqid 2729 . . . 4 (join‘𝐾) = (join‘𝐾)
81, 7, 3, 4, 5, 6latcl2 18342 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom (join‘𝐾) ∧ ⟨𝑋, 𝑌⟩ ∈ dom ))
98simprd 495 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
101, 2, 3, 4, 5, 6, 9lemeet1 18302 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cop 4583   class class class wbr 5092  dom cdm 5619  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-glb 18251  df-meet 18253  df-lat 18338
This theorem is referenced by:  latleeqm1  18373  latmlem1  18375  latnlemlt  18378  latmidm  18380  latabs1  18381  latledi  18383  latmlej11  18384  oldmm1  39196  cmtbr3N  39233  cmtbr4N  39234  lecmtN  39235  cvrat4  39422  2llnmat  39503  llnmlplnN  39518  dalem3  39643  dalem27  39678  dalem54  39705  dalem55  39706  2lnat  39763  cdlema1N  39770  llnexchb2lem  39847  dalawlem1  39850  dalawlem6  39855  dalawlem11  39860  dalawlem12  39861  4atexlemunv  40045  4atexlemc  40048  4atexlemnclw  40049  4atexlemex2  40050  4atexlemcnd  40051  lautm  40073  trlval3  40166  cdlemeulpq  40199  cdleme3h  40214  cdleme4a  40218  cdleme9  40232  cdleme11g  40244  cdleme13  40251  cdleme16e  40261  cdlemednpq  40278  cdleme19b  40283  cdleme20e  40292  cdleme20j  40297  cdleme22cN  40321  cdleme22e  40323  cdleme22eALTN  40324  cdleme22g  40327  cdleme35b  40429  cdleme35f  40433  cdlemeg46vrg  40506  cdlemg11b  40621  cdlemg12f  40627  cdlemg19a  40662  cdlemg31a  40676  cdlemk12  40829  cdlemkole  40832  cdlemk12u  40851  cdlemk37  40893  dia2dimlem1  41043  dihopelvalcpre  41227  dihmeetlem1N  41269  dihglblem5apreN  41270  dihglblem2N  41273  dihmeetlem2N  41278
  Copyright terms: Public domain W3C validator