Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version |
Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | simp1 1134 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1135 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2738 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | 1, 7, 3, 4, 5, 6 | latcl2 18069 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18032 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-glb 17980 df-meet 17982 df-lat 18065 |
This theorem is referenced by: latmlem1 18102 latledi 18110 mod1ile 18126 oldmm1 37158 olm01 37177 cmtcomlemN 37189 cmtbr4N 37196 meetat 37237 cvrexchlem 37360 cvrat4 37384 2llnmj 37501 2lplnmj 37563 dalem25 37639 dalem54 37667 dalem57 37670 cdlema1N 37732 cdlemb 37735 llnexchb2lem 37809 llnexch2N 37811 dalawlem1 37812 dalawlem3 37814 pl42lem1N 37920 lhpelim 37978 lhpat3 37987 4atexlemunv 38007 4atexlemtlw 38008 4atexlemnclw 38011 4atexlemex2 38012 lautm 38035 trlle 38125 cdlemc2 38133 cdlemc5 38136 cdlemd2 38140 cdleme0b 38153 cdleme0c 38154 cdleme0fN 38159 cdleme01N 38162 cdleme0ex1N 38164 cdleme2 38169 cdleme3b 38170 cdleme3c 38171 cdleme3g 38175 cdleme3h 38176 cdleme7aa 38183 cdleme7c 38186 cdleme7d 38187 cdleme7e 38188 cdleme7ga 38189 cdleme11fN 38205 cdleme11k 38209 cdleme15d 38218 cdleme16f 38224 cdlemednpq 38240 cdleme19c 38246 cdleme20aN 38250 cdleme20c 38252 cdleme20j 38259 cdleme21c 38268 cdleme21ct 38270 cdleme22cN 38283 cdleme22f 38287 cdleme23a 38290 cdleme28a 38311 cdleme35d 38393 cdleme35f 38395 cdlemeg46frv 38466 cdlemeg46rgv 38469 cdlemeg46req 38470 cdlemg2fv2 38541 cdlemg2m 38545 cdlemg4 38558 cdlemg10bALTN 38577 cdlemg31b 38639 trlcolem 38667 cdlemk14 38795 dia2dimlem1 39005 docaclN 39065 doca2N 39067 djajN 39078 dihjustlem 39157 dihord1 39159 dihord2a 39160 dihord2b 39161 dihord2cN 39162 dihord11b 39163 dihord11c 39165 dihord2pre 39166 dihlsscpre 39175 dihvalcq2 39188 dihopelvalcpre 39189 dihord6apre 39197 dihord5b 39200 dihord5apre 39203 dihmeetlem1N 39231 dihglblem5apreN 39232 dihglblem3N 39236 dihmeetbclemN 39245 dihmeetlem4preN 39247 dihmeetlem7N 39251 dihmeetlem9N 39256 dihjatcclem4 39362 |
Copyright terms: Public domain | W3C validator |