| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2731 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18337 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18298 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4577 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 lecple 17163 joincjn 18212 meetcmee 18213 Latclat 18332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-glb 18246 df-meet 18248 df-lat 18333 |
| This theorem is referenced by: latmlem1 18370 latledi 18378 mod1ile 18394 oldmm1 39256 olm01 39275 cmtcomlemN 39287 cmtbr4N 39294 meetat 39335 cvrexchlem 39458 cvrat4 39482 2llnmj 39599 2lplnmj 39661 dalem25 39737 dalem54 39765 dalem57 39768 cdlema1N 39830 cdlemb 39833 llnexchb2lem 39907 llnexch2N 39909 dalawlem1 39910 dalawlem3 39912 pl42lem1N 40018 lhpelim 40076 lhpat3 40085 4atexlemunv 40105 4atexlemtlw 40106 4atexlemnclw 40109 4atexlemex2 40110 lautm 40133 trlle 40223 cdlemc2 40231 cdlemc5 40234 cdlemd2 40238 cdleme0b 40251 cdleme0c 40252 cdleme0fN 40257 cdleme01N 40260 cdleme0ex1N 40262 cdleme2 40267 cdleme3b 40268 cdleme3c 40269 cdleme3g 40273 cdleme3h 40274 cdleme7aa 40281 cdleme7c 40284 cdleme7d 40285 cdleme7e 40286 cdleme7ga 40287 cdleme11fN 40303 cdleme11k 40307 cdleme15d 40316 cdleme16f 40322 cdlemednpq 40338 cdleme19c 40344 cdleme20aN 40348 cdleme20c 40350 cdleme20j 40357 cdleme21c 40366 cdleme21ct 40368 cdleme22cN 40381 cdleme22f 40385 cdleme23a 40388 cdleme28a 40409 cdleme35d 40491 cdleme35f 40493 cdlemeg46frv 40564 cdlemeg46rgv 40567 cdlemeg46req 40568 cdlemg2fv2 40639 cdlemg2m 40643 cdlemg4 40656 cdlemg10bALTN 40675 cdlemg31b 40737 trlcolem 40765 cdlemk14 40893 dia2dimlem1 41103 docaclN 41163 doca2N 41165 djajN 41176 dihjustlem 41255 dihord1 41257 dihord2a 41258 dihord2b 41259 dihord2cN 41260 dihord11b 41261 dihord11c 41263 dihord2pre 41264 dihlsscpre 41273 dihvalcq2 41286 dihopelvalcpre 41287 dihord6apre 41295 dihord5b 41298 dihord5apre 41301 dihmeetlem1N 41329 dihglblem5apreN 41330 dihglblem3N 41334 dihmeetbclemN 41343 dihmeetlem4preN 41345 dihmeetlem7N 41349 dihmeetlem9N 41354 dihjatcclem4 41460 |
| Copyright terms: Public domain | W3C validator |