| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2730 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18402 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18365 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 joincjn 18279 meetcmee 18280 Latclat 18397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-glb 18313 df-meet 18315 df-lat 18398 |
| This theorem is referenced by: latmlem1 18435 latledi 18443 mod1ile 18459 oldmm1 39217 olm01 39236 cmtcomlemN 39248 cmtbr4N 39255 meetat 39296 cvrexchlem 39420 cvrat4 39444 2llnmj 39561 2lplnmj 39623 dalem25 39699 dalem54 39727 dalem57 39730 cdlema1N 39792 cdlemb 39795 llnexchb2lem 39869 llnexch2N 39871 dalawlem1 39872 dalawlem3 39874 pl42lem1N 39980 lhpelim 40038 lhpat3 40047 4atexlemunv 40067 4atexlemtlw 40068 4atexlemnclw 40071 4atexlemex2 40072 lautm 40095 trlle 40185 cdlemc2 40193 cdlemc5 40196 cdlemd2 40200 cdleme0b 40213 cdleme0c 40214 cdleme0fN 40219 cdleme01N 40222 cdleme0ex1N 40224 cdleme2 40229 cdleme3b 40230 cdleme3c 40231 cdleme3g 40235 cdleme3h 40236 cdleme7aa 40243 cdleme7c 40246 cdleme7d 40247 cdleme7e 40248 cdleme7ga 40249 cdleme11fN 40265 cdleme11k 40269 cdleme15d 40278 cdleme16f 40284 cdlemednpq 40300 cdleme19c 40306 cdleme20aN 40310 cdleme20c 40312 cdleme20j 40319 cdleme21c 40328 cdleme21ct 40330 cdleme22cN 40343 cdleme22f 40347 cdleme23a 40350 cdleme28a 40371 cdleme35d 40453 cdleme35f 40455 cdlemeg46frv 40526 cdlemeg46rgv 40529 cdlemeg46req 40530 cdlemg2fv2 40601 cdlemg2m 40605 cdlemg4 40618 cdlemg10bALTN 40637 cdlemg31b 40699 trlcolem 40727 cdlemk14 40855 dia2dimlem1 41065 docaclN 41125 doca2N 41127 djajN 41138 dihjustlem 41217 dihord1 41219 dihord2a 41220 dihord2b 41221 dihord2cN 41222 dihord11b 41223 dihord11c 41225 dihord2pre 41226 dihlsscpre 41235 dihvalcq2 41248 dihopelvalcpre 41249 dihord6apre 41257 dihord5b 41260 dihord5apre 41263 dihmeetlem1N 41291 dihglblem5apreN 41292 dihglblem3N 41296 dihmeetbclemN 41305 dihmeetlem4preN 41307 dihmeetlem7N 41311 dihmeetlem9N 41316 dihjatcclem4 41422 |
| Copyright terms: Public domain | W3C validator |