| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2733 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18350 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18311 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 dom cdm 5621 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 lecple 17175 joincjn 18225 meetcmee 18226 Latclat 18345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-glb 18259 df-meet 18261 df-lat 18346 |
| This theorem is referenced by: latmlem1 18383 latledi 18391 mod1ile 18407 oldmm1 39389 olm01 39408 cmtcomlemN 39420 cmtbr4N 39427 meetat 39468 cvrexchlem 39591 cvrat4 39615 2llnmj 39732 2lplnmj 39794 dalem25 39870 dalem54 39898 dalem57 39901 cdlema1N 39963 cdlemb 39966 llnexchb2lem 40040 llnexch2N 40042 dalawlem1 40043 dalawlem3 40045 pl42lem1N 40151 lhpelim 40209 lhpat3 40218 4atexlemunv 40238 4atexlemtlw 40239 4atexlemnclw 40242 4atexlemex2 40243 lautm 40266 trlle 40356 cdlemc2 40364 cdlemc5 40367 cdlemd2 40371 cdleme0b 40384 cdleme0c 40385 cdleme0fN 40390 cdleme01N 40393 cdleme0ex1N 40395 cdleme2 40400 cdleme3b 40401 cdleme3c 40402 cdleme3g 40406 cdleme3h 40407 cdleme7aa 40414 cdleme7c 40417 cdleme7d 40418 cdleme7e 40419 cdleme7ga 40420 cdleme11fN 40436 cdleme11k 40440 cdleme15d 40449 cdleme16f 40455 cdlemednpq 40471 cdleme19c 40477 cdleme20aN 40481 cdleme20c 40483 cdleme20j 40490 cdleme21c 40499 cdleme21ct 40501 cdleme22cN 40514 cdleme22f 40518 cdleme23a 40521 cdleme28a 40542 cdleme35d 40624 cdleme35f 40626 cdlemeg46frv 40697 cdlemeg46rgv 40700 cdlemeg46req 40701 cdlemg2fv2 40772 cdlemg2m 40776 cdlemg4 40789 cdlemg10bALTN 40808 cdlemg31b 40870 trlcolem 40898 cdlemk14 41026 dia2dimlem1 41236 docaclN 41296 doca2N 41298 djajN 41309 dihjustlem 41388 dihord1 41390 dihord2a 41391 dihord2b 41392 dihord2cN 41393 dihord11b 41394 dihord11c 41396 dihord2pre 41397 dihlsscpre 41406 dihvalcq2 41419 dihopelvalcpre 41420 dihord6apre 41428 dihord5b 41431 dihord5apre 41434 dihmeetlem1N 41462 dihglblem5apreN 41463 dihglblem3N 41467 dihmeetbclemN 41476 dihmeetlem4preN 41478 dihmeetlem7N 41482 dihmeetlem9N 41487 dihjatcclem4 41593 |
| Copyright terms: Public domain | W3C validator |