| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18395 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18358 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 joincjn 18272 meetcmee 18273 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-glb 18306 df-meet 18308 df-lat 18391 |
| This theorem is referenced by: latmlem1 18428 latledi 18436 mod1ile 18452 oldmm1 39210 olm01 39229 cmtcomlemN 39241 cmtbr4N 39248 meetat 39289 cvrexchlem 39413 cvrat4 39437 2llnmj 39554 2lplnmj 39616 dalem25 39692 dalem54 39720 dalem57 39723 cdlema1N 39785 cdlemb 39788 llnexchb2lem 39862 llnexch2N 39864 dalawlem1 39865 dalawlem3 39867 pl42lem1N 39973 lhpelim 40031 lhpat3 40040 4atexlemunv 40060 4atexlemtlw 40061 4atexlemnclw 40064 4atexlemex2 40065 lautm 40088 trlle 40178 cdlemc2 40186 cdlemc5 40189 cdlemd2 40193 cdleme0b 40206 cdleme0c 40207 cdleme0fN 40212 cdleme01N 40215 cdleme0ex1N 40217 cdleme2 40222 cdleme3b 40223 cdleme3c 40224 cdleme3g 40228 cdleme3h 40229 cdleme7aa 40236 cdleme7c 40239 cdleme7d 40240 cdleme7e 40241 cdleme7ga 40242 cdleme11fN 40258 cdleme11k 40262 cdleme15d 40271 cdleme16f 40277 cdlemednpq 40293 cdleme19c 40299 cdleme20aN 40303 cdleme20c 40305 cdleme20j 40312 cdleme21c 40321 cdleme21ct 40323 cdleme22cN 40336 cdleme22f 40340 cdleme23a 40343 cdleme28a 40364 cdleme35d 40446 cdleme35f 40448 cdlemeg46frv 40519 cdlemeg46rgv 40522 cdlemeg46req 40523 cdlemg2fv2 40594 cdlemg2m 40598 cdlemg4 40611 cdlemg10bALTN 40630 cdlemg31b 40692 trlcolem 40720 cdlemk14 40848 dia2dimlem1 41058 docaclN 41118 doca2N 41120 djajN 41131 dihjustlem 41210 dihord1 41212 dihord2a 41213 dihord2b 41214 dihord2cN 41215 dihord11b 41216 dihord11c 41218 dihord2pre 41219 dihlsscpre 41228 dihvalcq2 41241 dihopelvalcpre 41242 dihord6apre 41250 dihord5b 41253 dihord5apre 41256 dihmeetlem1N 41284 dihglblem5apreN 41285 dihglblem3N 41289 dihmeetbclemN 41298 dihmeetlem4preN 41300 dihmeetlem7N 41304 dihmeetlem9N 41309 dihjatcclem4 41415 |
| Copyright terms: Public domain | W3C validator |