| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18342 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18303 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-glb 18251 df-meet 18253 df-lat 18338 |
| This theorem is referenced by: latmlem1 18375 latledi 18383 mod1ile 18399 oldmm1 39196 olm01 39215 cmtcomlemN 39227 cmtbr4N 39234 meetat 39275 cvrexchlem 39398 cvrat4 39422 2llnmj 39539 2lplnmj 39601 dalem25 39677 dalem54 39705 dalem57 39708 cdlema1N 39770 cdlemb 39773 llnexchb2lem 39847 llnexch2N 39849 dalawlem1 39850 dalawlem3 39852 pl42lem1N 39958 lhpelim 40016 lhpat3 40025 4atexlemunv 40045 4atexlemtlw 40046 4atexlemnclw 40049 4atexlemex2 40050 lautm 40073 trlle 40163 cdlemc2 40171 cdlemc5 40174 cdlemd2 40178 cdleme0b 40191 cdleme0c 40192 cdleme0fN 40197 cdleme01N 40200 cdleme0ex1N 40202 cdleme2 40207 cdleme3b 40208 cdleme3c 40209 cdleme3g 40213 cdleme3h 40214 cdleme7aa 40221 cdleme7c 40224 cdleme7d 40225 cdleme7e 40226 cdleme7ga 40227 cdleme11fN 40243 cdleme11k 40247 cdleme15d 40256 cdleme16f 40262 cdlemednpq 40278 cdleme19c 40284 cdleme20aN 40288 cdleme20c 40290 cdleme20j 40297 cdleme21c 40306 cdleme21ct 40308 cdleme22cN 40321 cdleme22f 40325 cdleme23a 40328 cdleme28a 40349 cdleme35d 40431 cdleme35f 40433 cdlemeg46frv 40504 cdlemeg46rgv 40507 cdlemeg46req 40508 cdlemg2fv2 40579 cdlemg2m 40583 cdlemg4 40596 cdlemg10bALTN 40615 cdlemg31b 40677 trlcolem 40705 cdlemk14 40833 dia2dimlem1 41043 docaclN 41103 doca2N 41105 djajN 41116 dihjustlem 41195 dihord1 41197 dihord2a 41198 dihord2b 41199 dihord2cN 41200 dihord11b 41201 dihord11c 41203 dihord2pre 41204 dihlsscpre 41213 dihvalcq2 41226 dihopelvalcpre 41227 dihord6apre 41235 dihord5b 41238 dihord5apre 41241 dihmeetlem1N 41269 dihglblem5apreN 41270 dihglblem3N 41274 dihmeetbclemN 41283 dihmeetlem4preN 41285 dihmeetlem7N 41289 dihmeetlem9N 41294 dihjatcclem4 41400 |
| Copyright terms: Public domain | W3C validator |