| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2735 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18446 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18409 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 joincjn 18323 meetcmee 18324 Latclat 18441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-glb 18357 df-meet 18359 df-lat 18442 |
| This theorem is referenced by: latmlem1 18479 latledi 18487 mod1ile 18503 oldmm1 39235 olm01 39254 cmtcomlemN 39266 cmtbr4N 39273 meetat 39314 cvrexchlem 39438 cvrat4 39462 2llnmj 39579 2lplnmj 39641 dalem25 39717 dalem54 39745 dalem57 39748 cdlema1N 39810 cdlemb 39813 llnexchb2lem 39887 llnexch2N 39889 dalawlem1 39890 dalawlem3 39892 pl42lem1N 39998 lhpelim 40056 lhpat3 40065 4atexlemunv 40085 4atexlemtlw 40086 4atexlemnclw 40089 4atexlemex2 40090 lautm 40113 trlle 40203 cdlemc2 40211 cdlemc5 40214 cdlemd2 40218 cdleme0b 40231 cdleme0c 40232 cdleme0fN 40237 cdleme01N 40240 cdleme0ex1N 40242 cdleme2 40247 cdleme3b 40248 cdleme3c 40249 cdleme3g 40253 cdleme3h 40254 cdleme7aa 40261 cdleme7c 40264 cdleme7d 40265 cdleme7e 40266 cdleme7ga 40267 cdleme11fN 40283 cdleme11k 40287 cdleme15d 40296 cdleme16f 40302 cdlemednpq 40318 cdleme19c 40324 cdleme20aN 40328 cdleme20c 40330 cdleme20j 40337 cdleme21c 40346 cdleme21ct 40348 cdleme22cN 40361 cdleme22f 40365 cdleme23a 40368 cdleme28a 40389 cdleme35d 40471 cdleme35f 40473 cdlemeg46frv 40544 cdlemeg46rgv 40547 cdlemeg46req 40548 cdlemg2fv2 40619 cdlemg2m 40623 cdlemg4 40636 cdlemg10bALTN 40655 cdlemg31b 40717 trlcolem 40745 cdlemk14 40873 dia2dimlem1 41083 docaclN 41143 doca2N 41145 djajN 41156 dihjustlem 41235 dihord1 41237 dihord2a 41238 dihord2b 41239 dihord2cN 41240 dihord11b 41241 dihord11c 41243 dihord2pre 41244 dihlsscpre 41253 dihvalcq2 41266 dihopelvalcpre 41267 dihord6apre 41275 dihord5b 41278 dihord5apre 41281 dihmeetlem1N 41309 dihglblem5apreN 41310 dihglblem3N 41314 dihmeetbclemN 41323 dihmeetlem4preN 41325 dihmeetlem7N 41329 dihmeetlem9N 41334 dihjatcclem4 41440 |
| Copyright terms: Public domain | W3C validator |