![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version |
Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | simp1 1135 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2734 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | 1, 7, 3, 4, 5, 6 | latcl2 18493 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18456 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 dom cdm 5688 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 lecple 17304 joincjn 18368 meetcmee 18369 Latclat 18488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-glb 18404 df-meet 18406 df-lat 18489 |
This theorem is referenced by: latmlem1 18526 latledi 18534 mod1ile 18550 oldmm1 39198 olm01 39217 cmtcomlemN 39229 cmtbr4N 39236 meetat 39277 cvrexchlem 39401 cvrat4 39425 2llnmj 39542 2lplnmj 39604 dalem25 39680 dalem54 39708 dalem57 39711 cdlema1N 39773 cdlemb 39776 llnexchb2lem 39850 llnexch2N 39852 dalawlem1 39853 dalawlem3 39855 pl42lem1N 39961 lhpelim 40019 lhpat3 40028 4atexlemunv 40048 4atexlemtlw 40049 4atexlemnclw 40052 4atexlemex2 40053 lautm 40076 trlle 40166 cdlemc2 40174 cdlemc5 40177 cdlemd2 40181 cdleme0b 40194 cdleme0c 40195 cdleme0fN 40200 cdleme01N 40203 cdleme0ex1N 40205 cdleme2 40210 cdleme3b 40211 cdleme3c 40212 cdleme3g 40216 cdleme3h 40217 cdleme7aa 40224 cdleme7c 40227 cdleme7d 40228 cdleme7e 40229 cdleme7ga 40230 cdleme11fN 40246 cdleme11k 40250 cdleme15d 40259 cdleme16f 40265 cdlemednpq 40281 cdleme19c 40287 cdleme20aN 40291 cdleme20c 40293 cdleme20j 40300 cdleme21c 40309 cdleme21ct 40311 cdleme22cN 40324 cdleme22f 40328 cdleme23a 40331 cdleme28a 40352 cdleme35d 40434 cdleme35f 40436 cdlemeg46frv 40507 cdlemeg46rgv 40510 cdlemeg46req 40511 cdlemg2fv2 40582 cdlemg2m 40586 cdlemg4 40599 cdlemg10bALTN 40618 cdlemg31b 40680 trlcolem 40708 cdlemk14 40836 dia2dimlem1 41046 docaclN 41106 doca2N 41108 djajN 41119 dihjustlem 41198 dihord1 41200 dihord2a 41201 dihord2b 41202 dihord2cN 41203 dihord11b 41204 dihord11c 41206 dihord2pre 41207 dihlsscpre 41216 dihvalcq2 41229 dihopelvalcpre 41230 dihord6apre 41238 dihord5b 41241 dihord5apre 41244 dihmeetlem1N 41272 dihglblem5apreN 41273 dihglblem3N 41277 dihmeetbclemN 41286 dihmeetlem4preN 41288 dihmeetlem7N 41292 dihmeetlem9N 41297 dihjatcclem4 41403 |
Copyright terms: Public domain | W3C validator |