| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version | ||
| Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 8 | 1, 7, 3, 4, 5, 6 | latcl2 18371 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18334 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 meetcmee 18249 Latclat 18366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-glb 18282 df-meet 18284 df-lat 18367 |
| This theorem is referenced by: latmlem1 18404 latledi 18412 mod1ile 18428 oldmm1 39183 olm01 39202 cmtcomlemN 39214 cmtbr4N 39221 meetat 39262 cvrexchlem 39386 cvrat4 39410 2llnmj 39527 2lplnmj 39589 dalem25 39665 dalem54 39693 dalem57 39696 cdlema1N 39758 cdlemb 39761 llnexchb2lem 39835 llnexch2N 39837 dalawlem1 39838 dalawlem3 39840 pl42lem1N 39946 lhpelim 40004 lhpat3 40013 4atexlemunv 40033 4atexlemtlw 40034 4atexlemnclw 40037 4atexlemex2 40038 lautm 40061 trlle 40151 cdlemc2 40159 cdlemc5 40162 cdlemd2 40166 cdleme0b 40179 cdleme0c 40180 cdleme0fN 40185 cdleme01N 40188 cdleme0ex1N 40190 cdleme2 40195 cdleme3b 40196 cdleme3c 40197 cdleme3g 40201 cdleme3h 40202 cdleme7aa 40209 cdleme7c 40212 cdleme7d 40213 cdleme7e 40214 cdleme7ga 40215 cdleme11fN 40231 cdleme11k 40235 cdleme15d 40244 cdleme16f 40250 cdlemednpq 40266 cdleme19c 40272 cdleme20aN 40276 cdleme20c 40278 cdleme20j 40285 cdleme21c 40294 cdleme21ct 40296 cdleme22cN 40309 cdleme22f 40313 cdleme23a 40316 cdleme28a 40337 cdleme35d 40419 cdleme35f 40421 cdlemeg46frv 40492 cdlemeg46rgv 40495 cdlemeg46req 40496 cdlemg2fv2 40567 cdlemg2m 40571 cdlemg4 40584 cdlemg10bALTN 40603 cdlemg31b 40665 trlcolem 40693 cdlemk14 40821 dia2dimlem1 41031 docaclN 41091 doca2N 41093 djajN 41104 dihjustlem 41183 dihord1 41185 dihord2a 41186 dihord2b 41187 dihord2cN 41188 dihord11b 41189 dihord11c 41191 dihord2pre 41192 dihlsscpre 41201 dihvalcq2 41214 dihopelvalcpre 41215 dihord6apre 41223 dihord5b 41226 dihord5apre 41229 dihmeetlem1N 41257 dihglblem5apreN 41258 dihglblem3N 41262 dihmeetbclemN 41271 dihmeetlem4preN 41273 dihmeetlem7N 41277 dihmeetlem9N 41282 dihjatcclem4 41388 |
| Copyright terms: Public domain | W3C validator |