Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version |
Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | simp1 1135 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2738 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | 1, 7, 3, 4, 5, 6 | latcl2 18154 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
9 | 8 | simprd 496 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18117 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-glb 18065 df-meet 18067 df-lat 18150 |
This theorem is referenced by: latmlem1 18187 latledi 18195 mod1ile 18211 oldmm1 37231 olm01 37250 cmtcomlemN 37262 cmtbr4N 37269 meetat 37310 cvrexchlem 37433 cvrat4 37457 2llnmj 37574 2lplnmj 37636 dalem25 37712 dalem54 37740 dalem57 37743 cdlema1N 37805 cdlemb 37808 llnexchb2lem 37882 llnexch2N 37884 dalawlem1 37885 dalawlem3 37887 pl42lem1N 37993 lhpelim 38051 lhpat3 38060 4atexlemunv 38080 4atexlemtlw 38081 4atexlemnclw 38084 4atexlemex2 38085 lautm 38108 trlle 38198 cdlemc2 38206 cdlemc5 38209 cdlemd2 38213 cdleme0b 38226 cdleme0c 38227 cdleme0fN 38232 cdleme01N 38235 cdleme0ex1N 38237 cdleme2 38242 cdleme3b 38243 cdleme3c 38244 cdleme3g 38248 cdleme3h 38249 cdleme7aa 38256 cdleme7c 38259 cdleme7d 38260 cdleme7e 38261 cdleme7ga 38262 cdleme11fN 38278 cdleme11k 38282 cdleme15d 38291 cdleme16f 38297 cdlemednpq 38313 cdleme19c 38319 cdleme20aN 38323 cdleme20c 38325 cdleme20j 38332 cdleme21c 38341 cdleme21ct 38343 cdleme22cN 38356 cdleme22f 38360 cdleme23a 38363 cdleme28a 38384 cdleme35d 38466 cdleme35f 38468 cdlemeg46frv 38539 cdlemeg46rgv 38542 cdlemeg46req 38543 cdlemg2fv2 38614 cdlemg2m 38618 cdlemg4 38631 cdlemg10bALTN 38650 cdlemg31b 38712 trlcolem 38740 cdlemk14 38868 dia2dimlem1 39078 docaclN 39138 doca2N 39140 djajN 39151 dihjustlem 39230 dihord1 39232 dihord2a 39233 dihord2b 39234 dihord2cN 39235 dihord11b 39236 dihord11c 39238 dihord2pre 39239 dihlsscpre 39248 dihvalcq2 39261 dihopelvalcpre 39262 dihord6apre 39270 dihord5b 39273 dihord5apre 39276 dihmeetlem1N 39304 dihglblem5apreN 39305 dihglblem3N 39309 dihmeetbclemN 39318 dihmeetlem4preN 39320 dihmeetlem7N 39324 dihmeetlem9N 39329 dihjatcclem4 39435 |
Copyright terms: Public domain | W3C validator |