![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmle2 | Structured version Visualization version GIF version |
Description: A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmle2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2740 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | 1, 7, 3, 4, 5, 6 | latcl2 18506 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
9 | 8 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lemeet2 18469 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-glb 18417 df-meet 18419 df-lat 18502 |
This theorem is referenced by: latmlem1 18539 latledi 18547 mod1ile 18563 oldmm1 39173 olm01 39192 cmtcomlemN 39204 cmtbr4N 39211 meetat 39252 cvrexchlem 39376 cvrat4 39400 2llnmj 39517 2lplnmj 39579 dalem25 39655 dalem54 39683 dalem57 39686 cdlema1N 39748 cdlemb 39751 llnexchb2lem 39825 llnexch2N 39827 dalawlem1 39828 dalawlem3 39830 pl42lem1N 39936 lhpelim 39994 lhpat3 40003 4atexlemunv 40023 4atexlemtlw 40024 4atexlemnclw 40027 4atexlemex2 40028 lautm 40051 trlle 40141 cdlemc2 40149 cdlemc5 40152 cdlemd2 40156 cdleme0b 40169 cdleme0c 40170 cdleme0fN 40175 cdleme01N 40178 cdleme0ex1N 40180 cdleme2 40185 cdleme3b 40186 cdleme3c 40187 cdleme3g 40191 cdleme3h 40192 cdleme7aa 40199 cdleme7c 40202 cdleme7d 40203 cdleme7e 40204 cdleme7ga 40205 cdleme11fN 40221 cdleme11k 40225 cdleme15d 40234 cdleme16f 40240 cdlemednpq 40256 cdleme19c 40262 cdleme20aN 40266 cdleme20c 40268 cdleme20j 40275 cdleme21c 40284 cdleme21ct 40286 cdleme22cN 40299 cdleme22f 40303 cdleme23a 40306 cdleme28a 40327 cdleme35d 40409 cdleme35f 40411 cdlemeg46frv 40482 cdlemeg46rgv 40485 cdlemeg46req 40486 cdlemg2fv2 40557 cdlemg2m 40561 cdlemg4 40574 cdlemg10bALTN 40593 cdlemg31b 40655 trlcolem 40683 cdlemk14 40811 dia2dimlem1 41021 docaclN 41081 doca2N 41083 djajN 41094 dihjustlem 41173 dihord1 41175 dihord2a 41176 dihord2b 41177 dihord2cN 41178 dihord11b 41179 dihord11c 41181 dihord2pre 41182 dihlsscpre 41191 dihvalcq2 41204 dihopelvalcpre 41205 dihord6apre 41213 dihord5b 41216 dihord5apre 41219 dihmeetlem1N 41247 dihglblem5apreN 41248 dihglblem3N 41252 dihmeetbclemN 41261 dihmeetlem4preN 41263 dihmeetlem7N 41267 dihmeetlem9N 41272 dihjatcclem4 41378 |
Copyright terms: Public domain | W3C validator |