![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. (chub1 31535 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | simp1 1135 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2734 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | 1, 3, 7, 4, 5, 6 | latcl2 18493 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18441 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 dom cdm 5688 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 lecple 17304 joincjn 18368 meetcmee 18369 Latclat 18488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-lub 18403 df-join 18405 df-lat 18489 |
This theorem is referenced by: latjlej1 18510 latnlej 18513 latnlej2 18516 latjidm 18519 latnle 18530 latabs2 18533 latmlej11 18535 latjass 18540 mod1ile 18550 lubun 18572 oldmm1 39198 olj01 39206 omllaw5N 39228 cvlexchb1 39311 cvlsupr2 39324 cvlsupr7 39329 hlatlej1 39356 hlrelat5N 39383 2atjm 39427 2llnmj 39542 lplnexllnN 39546 2llnjaN 39548 2llnm2N 39550 4atlem3a 39579 2lplnja 39601 2lplnm2N 39603 2lplnmj 39604 dalemply 39636 dalemsly 39637 dalem10 39655 dalem13 39658 dalem21 39676 dalem55 39709 2llnma1b 39768 cdlema1N 39773 elpaddn0 39782 paddasslem12 39813 paddasslem13 39814 pmapjoin 39834 dalawlem2 39854 dalawlem7 39859 dalawlem11 39863 dalawlem12 39864 lhpmcvr3 40007 lhpmcvr5N 40009 lhpmcvr6N 40010 lautj 40075 trljat1 40148 cdlemc1 40173 cdlemc4 40176 cdleme1 40209 cdleme8 40232 cdleme11g 40247 cdleme22e 40326 cdleme22eALTN 40327 cdleme23b 40332 cdleme23c 40333 cdleme27N 40351 cdleme30a 40360 cdleme35fnpq 40431 cdleme35b 40432 cdleme35c 40433 cdleme42h 40464 cdleme42i 40465 cdleme48bw 40484 cdlemg2fv2 40582 cdlemg7fvbwN 40589 cdlemg8b 40610 cdlemg11b 40624 trlcolem 40708 trljco 40722 cdlemi1 40800 cdlemk48 40932 cdlemn2 41177 dihjustlem 41198 dihord1 41200 dihord5apre 41244 dihglbcpreN 41282 dihmeetlem3N 41287 dihmeetlem11N 41299 |
Copyright terms: Public domain | W3C validator |