| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. (chub1 31487 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | 1, 3, 7, 4, 5, 6 | latcl2 18378 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18324 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 lecple 17204 joincjn 18253 meetcmee 18254 Latclat 18373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18286 df-join 18288 df-lat 18374 |
| This theorem is referenced by: latjlej1 18395 latnlej 18398 latnlej2 18401 latjidm 18404 latnle 18415 latabs2 18418 latmlej11 18420 latjass 18425 mod1ile 18435 lubun 18457 oldmm1 39204 olj01 39212 omllaw5N 39234 cvlexchb1 39317 cvlsupr2 39330 cvlsupr7 39335 hlatlej1 39362 hlrelat5N 39389 2atjm 39433 2llnmj 39548 lplnexllnN 39552 2llnjaN 39554 2llnm2N 39556 4atlem3a 39585 2lplnja 39607 2lplnm2N 39609 2lplnmj 39610 dalemply 39642 dalemsly 39643 dalem10 39661 dalem13 39664 dalem21 39682 dalem55 39715 2llnma1b 39774 cdlema1N 39779 elpaddn0 39788 paddasslem12 39819 paddasslem13 39820 pmapjoin 39840 dalawlem2 39860 dalawlem7 39865 dalawlem11 39869 dalawlem12 39870 lhpmcvr3 40013 lhpmcvr5N 40015 lhpmcvr6N 40016 lautj 40081 trljat1 40154 cdlemc1 40179 cdlemc4 40182 cdleme1 40215 cdleme8 40238 cdleme11g 40253 cdleme22e 40332 cdleme22eALTN 40333 cdleme23b 40338 cdleme23c 40339 cdleme27N 40357 cdleme30a 40366 cdleme35fnpq 40437 cdleme35b 40438 cdleme35c 40439 cdleme42h 40470 cdleme42i 40471 cdleme48bw 40490 cdlemg2fv2 40588 cdlemg7fvbwN 40595 cdlemg8b 40616 cdlemg11b 40630 trlcolem 40714 trljco 40728 cdlemi1 40806 cdlemk48 40938 cdlemn2 41183 dihjustlem 41204 dihord1 41206 dihord5apre 41250 dihglbcpreN 41288 dihmeetlem3N 41293 dihmeetlem11N 41305 |
| Copyright terms: Public domain | W3C validator |