Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. (chub1 29869 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | simp1 1135 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | 1, 3, 7, 4, 5, 6 | latcl2 18154 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
9 | 8 | simpld 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18102 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-lub 18064 df-join 18066 df-lat 18150 |
This theorem is referenced by: latjlej1 18171 latnlej 18174 latnlej2 18177 latjidm 18180 latnle 18191 latabs2 18194 latmlej11 18196 latjass 18201 mod1ile 18211 lubun 18233 oldmm1 37231 olj01 37239 omllaw5N 37261 cvlexchb1 37344 cvlsupr2 37357 cvlsupr7 37362 hlatlej1 37389 hlrelat5N 37415 2atjm 37459 2llnmj 37574 lplnexllnN 37578 2llnjaN 37580 2llnm2N 37582 4atlem3a 37611 2lplnja 37633 2lplnm2N 37635 2lplnmj 37636 dalemply 37668 dalemsly 37669 dalem10 37687 dalem13 37690 dalem21 37708 dalem55 37741 2llnma1b 37800 cdlema1N 37805 elpaddn0 37814 paddasslem12 37845 paddasslem13 37846 pmapjoin 37866 dalawlem2 37886 dalawlem7 37891 dalawlem11 37895 dalawlem12 37896 lhpmcvr3 38039 lhpmcvr5N 38041 lhpmcvr6N 38042 lautj 38107 trljat1 38180 cdlemc1 38205 cdlemc4 38208 cdleme1 38241 cdleme8 38264 cdleme11g 38279 cdleme22e 38358 cdleme22eALTN 38359 cdleme23b 38364 cdleme23c 38365 cdleme27N 38383 cdleme30a 38392 cdleme35fnpq 38463 cdleme35b 38464 cdleme35c 38465 cdleme42h 38496 cdleme42i 38497 cdleme48bw 38516 cdlemg2fv2 38614 cdlemg7fvbwN 38621 cdlemg8b 38642 cdlemg11b 38656 trlcolem 38740 trljco 38754 cdlemi1 38832 cdlemk48 38964 cdlemn2 39209 dihjustlem 39230 dihord1 39232 dihord5apre 39276 dihglbcpreN 39314 dihmeetlem3N 39319 dihmeetlem11N 39331 |
Copyright terms: Public domain | W3C validator |