| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. (chub1 31455 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | 1, 3, 7, 4, 5, 6 | latcl2 18342 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18288 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-lub 18250 df-join 18252 df-lat 18338 |
| This theorem is referenced by: latjlej1 18359 latnlej 18362 latnlej2 18365 latjidm 18368 latnle 18379 latabs2 18382 latmlej11 18384 latjass 18389 mod1ile 18399 lubun 18421 oldmm1 39216 olj01 39224 omllaw5N 39246 cvlexchb1 39329 cvlsupr2 39342 cvlsupr7 39347 hlatlej1 39374 hlrelat5N 39400 2atjm 39444 2llnmj 39559 lplnexllnN 39563 2llnjaN 39565 2llnm2N 39567 4atlem3a 39596 2lplnja 39618 2lplnm2N 39620 2lplnmj 39621 dalemply 39653 dalemsly 39654 dalem10 39672 dalem13 39675 dalem21 39693 dalem55 39726 2llnma1b 39785 cdlema1N 39790 elpaddn0 39799 paddasslem12 39830 paddasslem13 39831 pmapjoin 39851 dalawlem2 39871 dalawlem7 39876 dalawlem11 39880 dalawlem12 39881 lhpmcvr3 40024 lhpmcvr5N 40026 lhpmcvr6N 40027 lautj 40092 trljat1 40165 cdlemc1 40190 cdlemc4 40193 cdleme1 40226 cdleme8 40249 cdleme11g 40264 cdleme22e 40343 cdleme22eALTN 40344 cdleme23b 40349 cdleme23c 40350 cdleme27N 40368 cdleme30a 40377 cdleme35fnpq 40448 cdleme35b 40449 cdleme35c 40450 cdleme42h 40481 cdleme42i 40482 cdleme48bw 40501 cdlemg2fv2 40599 cdlemg7fvbwN 40606 cdlemg8b 40627 cdlemg11b 40641 trlcolem 40725 trljco 40739 cdlemi1 40817 cdlemk48 40949 cdlemn2 41194 dihjustlem 41215 dihord1 41217 dihord5apre 41261 dihglbcpreN 41299 dihmeetlem3N 41304 dihmeetlem11N 41316 |
| Copyright terms: Public domain | W3C validator |