| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. (chub1 31443 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2730 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | 1, 3, 7, 4, 5, 6 | latcl2 18402 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18350 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 joincjn 18279 meetcmee 18280 Latclat 18397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-lub 18312 df-join 18314 df-lat 18398 |
| This theorem is referenced by: latjlej1 18419 latnlej 18422 latnlej2 18425 latjidm 18428 latnle 18439 latabs2 18442 latmlej11 18444 latjass 18449 mod1ile 18459 lubun 18481 oldmm1 39217 olj01 39225 omllaw5N 39247 cvlexchb1 39330 cvlsupr2 39343 cvlsupr7 39348 hlatlej1 39375 hlrelat5N 39402 2atjm 39446 2llnmj 39561 lplnexllnN 39565 2llnjaN 39567 2llnm2N 39569 4atlem3a 39598 2lplnja 39620 2lplnm2N 39622 2lplnmj 39623 dalemply 39655 dalemsly 39656 dalem10 39674 dalem13 39677 dalem21 39695 dalem55 39728 2llnma1b 39787 cdlema1N 39792 elpaddn0 39801 paddasslem12 39832 paddasslem13 39833 pmapjoin 39853 dalawlem2 39873 dalawlem7 39878 dalawlem11 39882 dalawlem12 39883 lhpmcvr3 40026 lhpmcvr5N 40028 lhpmcvr6N 40029 lautj 40094 trljat1 40167 cdlemc1 40192 cdlemc4 40195 cdleme1 40228 cdleme8 40251 cdleme11g 40266 cdleme22e 40345 cdleme22eALTN 40346 cdleme23b 40351 cdleme23c 40352 cdleme27N 40370 cdleme30a 40379 cdleme35fnpq 40450 cdleme35b 40451 cdleme35c 40452 cdleme42h 40483 cdleme42i 40484 cdleme48bw 40503 cdlemg2fv2 40601 cdlemg7fvbwN 40608 cdlemg8b 40629 cdlemg11b 40643 trlcolem 40727 trljco 40741 cdlemi1 40819 cdlemk48 40951 cdlemn2 41196 dihjustlem 41217 dihord1 41219 dihord5apre 41263 dihglbcpreN 41301 dihmeetlem3N 41306 dihmeetlem11N 41318 |
| Copyright terms: Public domain | W3C validator |