| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. (chub1 31434 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2735 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | 1, 3, 7, 4, 5, 6 | latcl2 18444 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18392 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 dom cdm 5654 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 lecple 17276 joincjn 18321 meetcmee 18322 Latclat 18439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-lub 18354 df-join 18356 df-lat 18440 |
| This theorem is referenced by: latjlej1 18461 latnlej 18464 latnlej2 18467 latjidm 18470 latnle 18481 latabs2 18484 latmlej11 18486 latjass 18491 mod1ile 18501 lubun 18523 oldmm1 39181 olj01 39189 omllaw5N 39211 cvlexchb1 39294 cvlsupr2 39307 cvlsupr7 39312 hlatlej1 39339 hlrelat5N 39366 2atjm 39410 2llnmj 39525 lplnexllnN 39529 2llnjaN 39531 2llnm2N 39533 4atlem3a 39562 2lplnja 39584 2lplnm2N 39586 2lplnmj 39587 dalemply 39619 dalemsly 39620 dalem10 39638 dalem13 39641 dalem21 39659 dalem55 39692 2llnma1b 39751 cdlema1N 39756 elpaddn0 39765 paddasslem12 39796 paddasslem13 39797 pmapjoin 39817 dalawlem2 39837 dalawlem7 39842 dalawlem11 39846 dalawlem12 39847 lhpmcvr3 39990 lhpmcvr5N 39992 lhpmcvr6N 39993 lautj 40058 trljat1 40131 cdlemc1 40156 cdlemc4 40159 cdleme1 40192 cdleme8 40215 cdleme11g 40230 cdleme22e 40309 cdleme22eALTN 40310 cdleme23b 40315 cdleme23c 40316 cdleme27N 40334 cdleme30a 40343 cdleme35fnpq 40414 cdleme35b 40415 cdleme35c 40416 cdleme42h 40447 cdleme42i 40448 cdleme48bw 40467 cdlemg2fv2 40565 cdlemg7fvbwN 40572 cdlemg8b 40593 cdlemg11b 40607 trlcolem 40691 trljco 40705 cdlemi1 40783 cdlemk48 40915 cdlemn2 41160 dihjustlem 41181 dihord1 41183 dihord5apre 41227 dihglbcpreN 41265 dihmeetlem3N 41270 dihmeetlem11N 41282 |
| Copyright terms: Public domain | W3C validator |