| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. (chub1 31487 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2731 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | 1, 3, 7, 4, 5, 6 | latcl2 18342 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18288 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-lub 18250 df-join 18252 df-lat 18338 |
| This theorem is referenced by: latjlej1 18359 latnlej 18362 latnlej2 18365 latjidm 18368 latnle 18379 latabs2 18382 latmlej11 18384 latjass 18389 mod1ile 18399 lubun 18421 oldmm1 39315 olj01 39323 omllaw5N 39345 cvlexchb1 39428 cvlsupr2 39441 cvlsupr7 39446 hlatlej1 39473 hlrelat5N 39499 2atjm 39543 2llnmj 39658 lplnexllnN 39662 2llnjaN 39664 2llnm2N 39666 4atlem3a 39695 2lplnja 39717 2lplnm2N 39719 2lplnmj 39720 dalemply 39752 dalemsly 39753 dalem10 39771 dalem13 39774 dalem21 39792 dalem55 39825 2llnma1b 39884 cdlema1N 39889 elpaddn0 39898 paddasslem12 39929 paddasslem13 39930 pmapjoin 39950 dalawlem2 39970 dalawlem7 39975 dalawlem11 39979 dalawlem12 39980 lhpmcvr3 40123 lhpmcvr5N 40125 lhpmcvr6N 40126 lautj 40191 trljat1 40264 cdlemc1 40289 cdlemc4 40292 cdleme1 40325 cdleme8 40348 cdleme11g 40363 cdleme22e 40442 cdleme22eALTN 40443 cdleme23b 40448 cdleme23c 40449 cdleme27N 40467 cdleme30a 40476 cdleme35fnpq 40547 cdleme35b 40548 cdleme35c 40549 cdleme42h 40580 cdleme42i 40581 cdleme48bw 40600 cdlemg2fv2 40698 cdlemg7fvbwN 40705 cdlemg8b 40726 cdlemg11b 40740 trlcolem 40824 trljco 40838 cdlemi1 40916 cdlemk48 41048 cdlemn2 41293 dihjustlem 41314 dihord1 41316 dihord5apre 41360 dihglbcpreN 41398 dihmeetlem3N 41403 dihmeetlem11N 41415 |
| Copyright terms: Public domain | W3C validator |