![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. (chub1 31539 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2740 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | 1, 3, 7, 4, 5, 6 | latcl2 18506 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18454 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-lub 18416 df-join 18418 df-lat 18502 |
This theorem is referenced by: latjlej1 18523 latnlej 18526 latnlej2 18529 latjidm 18532 latnle 18543 latabs2 18546 latmlej11 18548 latjass 18553 mod1ile 18563 lubun 18585 oldmm1 39173 olj01 39181 omllaw5N 39203 cvlexchb1 39286 cvlsupr2 39299 cvlsupr7 39304 hlatlej1 39331 hlrelat5N 39358 2atjm 39402 2llnmj 39517 lplnexllnN 39521 2llnjaN 39523 2llnm2N 39525 4atlem3a 39554 2lplnja 39576 2lplnm2N 39578 2lplnmj 39579 dalemply 39611 dalemsly 39612 dalem10 39630 dalem13 39633 dalem21 39651 dalem55 39684 2llnma1b 39743 cdlema1N 39748 elpaddn0 39757 paddasslem12 39788 paddasslem13 39789 pmapjoin 39809 dalawlem2 39829 dalawlem7 39834 dalawlem11 39838 dalawlem12 39839 lhpmcvr3 39982 lhpmcvr5N 39984 lhpmcvr6N 39985 lautj 40050 trljat1 40123 cdlemc1 40148 cdlemc4 40151 cdleme1 40184 cdleme8 40207 cdleme11g 40222 cdleme22e 40301 cdleme22eALTN 40302 cdleme23b 40307 cdleme23c 40308 cdleme27N 40326 cdleme30a 40335 cdleme35fnpq 40406 cdleme35b 40407 cdleme35c 40408 cdleme42h 40439 cdleme42i 40440 cdleme48bw 40459 cdlemg2fv2 40557 cdlemg7fvbwN 40564 cdlemg8b 40585 cdlemg11b 40599 trlcolem 40683 trljco 40697 cdlemi1 40775 cdlemk48 40907 cdlemn2 41152 dihjustlem 41173 dihord1 41175 dihord5apre 41219 dihglbcpreN 41257 dihmeetlem3N 41262 dihmeetlem11N 41274 |
Copyright terms: Public domain | W3C validator |