| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. (chub1 31486 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | simp1 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 5 | simp2 1137 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 7 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | 1, 3, 7, 4, 5, 6 | latcl2 18377 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18323 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18252 meetcmee 18253 Latclat 18372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18285 df-join 18287 df-lat 18373 |
| This theorem is referenced by: latjlej1 18394 latnlej 18397 latnlej2 18400 latjidm 18403 latnle 18414 latabs2 18417 latmlej11 18419 latjass 18424 mod1ile 18434 lubun 18456 oldmm1 39203 olj01 39211 omllaw5N 39233 cvlexchb1 39316 cvlsupr2 39329 cvlsupr7 39334 hlatlej1 39361 hlrelat5N 39388 2atjm 39432 2llnmj 39547 lplnexllnN 39551 2llnjaN 39553 2llnm2N 39555 4atlem3a 39584 2lplnja 39606 2lplnm2N 39608 2lplnmj 39609 dalemply 39641 dalemsly 39642 dalem10 39660 dalem13 39663 dalem21 39681 dalem55 39714 2llnma1b 39773 cdlema1N 39778 elpaddn0 39787 paddasslem12 39818 paddasslem13 39819 pmapjoin 39839 dalawlem2 39859 dalawlem7 39864 dalawlem11 39868 dalawlem12 39869 lhpmcvr3 40012 lhpmcvr5N 40014 lhpmcvr6N 40015 lautj 40080 trljat1 40153 cdlemc1 40178 cdlemc4 40181 cdleme1 40214 cdleme8 40237 cdleme11g 40252 cdleme22e 40331 cdleme22eALTN 40332 cdleme23b 40337 cdleme23c 40338 cdleme27N 40356 cdleme30a 40365 cdleme35fnpq 40436 cdleme35b 40437 cdleme35c 40438 cdleme42h 40469 cdleme42i 40470 cdleme48bw 40489 cdlemg2fv2 40587 cdlemg7fvbwN 40594 cdlemg8b 40615 cdlemg11b 40629 trlcolem 40713 trljco 40727 cdlemi1 40805 cdlemk48 40937 cdlemn2 41182 dihjustlem 41203 dihord1 41205 dihord5apre 41249 dihglbcpreN 41287 dihmeetlem3N 41292 dihmeetlem11N 41304 |
| Copyright terms: Public domain | W3C validator |