Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. (chub1 29770 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latlej1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | simp1 1134 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1135 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1136 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | 1, 3, 7, 4, 5, 6 | latcl2 18069 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
9 | 8 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lejoin1 18017 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-lub 17979 df-join 17981 df-lat 18065 |
This theorem is referenced by: latjlej1 18086 latnlej 18089 latnlej2 18092 latjidm 18095 latnle 18106 latabs2 18109 latmlej11 18111 latjass 18116 mod1ile 18126 lubun 18148 oldmm1 37158 olj01 37166 omllaw5N 37188 cvlexchb1 37271 cvlsupr2 37284 cvlsupr7 37289 hlatlej1 37316 hlrelat5N 37342 2atjm 37386 2llnmj 37501 lplnexllnN 37505 2llnjaN 37507 2llnm2N 37509 4atlem3a 37538 2lplnja 37560 2lplnm2N 37562 2lplnmj 37563 dalemply 37595 dalemsly 37596 dalem10 37614 dalem13 37617 dalem21 37635 dalem55 37668 2llnma1b 37727 cdlema1N 37732 elpaddn0 37741 paddasslem12 37772 paddasslem13 37773 pmapjoin 37793 dalawlem2 37813 dalawlem7 37818 dalawlem11 37822 dalawlem12 37823 lhpmcvr3 37966 lhpmcvr5N 37968 lhpmcvr6N 37969 lautj 38034 trljat1 38107 cdlemc1 38132 cdlemc4 38135 cdleme1 38168 cdleme8 38191 cdleme11g 38206 cdleme22e 38285 cdleme22eALTN 38286 cdleme23b 38291 cdleme23c 38292 cdleme27N 38310 cdleme30a 38319 cdleme35fnpq 38390 cdleme35b 38391 cdleme35c 38392 cdleme42h 38423 cdleme42i 38424 cdleme48bw 38443 cdlemg2fv2 38541 cdlemg7fvbwN 38548 cdlemg8b 38569 cdlemg11b 38583 trlcolem 38667 trljco 38681 cdlemi1 38759 cdlemk48 38891 cdlemn2 39136 dihjustlem 39157 dihord1 39159 dihord5apre 39203 dihglbcpreN 39241 dihmeetlem3N 39246 dihmeetlem11N 39258 |
Copyright terms: Public domain | W3C validator |