| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . 4
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ 𝐵) |
| 2 | 1 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ 𝐵) |
| 3 | | grpissubg.s |
. . . . 5
⊢ 𝑆 = (Base‘𝐻) |
| 4 | 3 | grpbn0 18984 |
. . . 4
⊢ (𝐻 ∈ Grp → 𝑆 ≠ ∅) |
| 5 | 4 | ad2antlr 727 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ≠ ∅) |
| 6 | | grpmnd 18958 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 7 | | mndmgm 18754 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mgm) |
| 9 | | grpmnd 18958 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) |
| 10 | | mndmgm 18754 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ Mnd → 𝐻 ∈ Mgm) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mgm) |
| 12 | 8, 11 | anim12i 613 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
| 13 | 12 | adantr 480 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
| 14 | 13 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
| 15 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
| 16 | 15 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
| 17 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
| 18 | 17 | anim1i 615 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) |
| 19 | | grpissubg.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 20 | 19, 3 | mgmsscl 18658 |
. . . . . . 7
⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 21 | 14, 16, 18, 20 | syl3anc 1373 |
. . . . . 6
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 22 | 21 | ralrimiva 3146 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 23 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → 𝐺 ∈ Grp) |
| 24 | 23 | adantr 480 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝐺 ∈ Grp) |
| 25 | | simplr 769 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝐻 ∈ Grp) |
| 26 | 19 | sseq2i 4013 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (Base‘𝐺)) |
| 27 | 26 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ 𝐵 → 𝑆 ⊆ (Base‘𝐺)) |
| 28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ (Base‘𝐺)) |
| 29 | 28 | adantl 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ (Base‘𝐺)) |
| 30 | | ovres 7599 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 31 | 30 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 32 | | oveq 7437 |
. . . . . . . . . . . . 13
⊢
((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → (𝑥(+g‘𝐻)𝑦) = (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦)) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑥(+g‘𝐻)𝑦) = (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦)) |
| 34 | 33 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 35 | 34 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 36 | 31, 35 | eqtr3d 2779 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 37 | 36 | ralrimivva 3202 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 38 | 24, 25, 3, 29, 37 | grpinvssd 19035 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑎 ∈ 𝑆 → ((invg‘𝐻)‘𝑎) = ((invg‘𝐺)‘𝑎))) |
| 39 | 38 | imp 406 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) = ((invg‘𝐺)‘𝑎)) |
| 40 | | eqid 2737 |
. . . . . . . 8
⊢
(invg‘𝐻) = (invg‘𝐻) |
| 41 | 3, 40 | grpinvcl 19005 |
. . . . . . 7
⊢ ((𝐻 ∈ Grp ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) ∈ 𝑆) |
| 42 | 41 | ad4ant24 754 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) ∈ 𝑆) |
| 43 | 39, 42 | eqeltrrd 2842 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
| 44 | 22, 43 | jca 511 |
. . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 45 | 44 | ralrimiva 3146 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
| 46 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 47 | | eqid 2737 |
. . . . 5
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 48 | 19, 46, 47 | issubg2 19159 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)))) |
| 49 | 48 | ad2antrr 726 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)))) |
| 50 | 2, 5, 45, 49 | mpbir3and 1343 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 51 | 50 | ex 412 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) |