MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpissubg Structured version   Visualization version   GIF version

Theorem grpissubg 18301
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
grpissubg.b 𝐵 = (Base‘𝐺)
grpissubg.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
grpissubg ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))

Proof of Theorem grpissubg
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆𝐵)
21adantl 484 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆𝐵)
3 grpissubg.s . . . . 5 𝑆 = (Base‘𝐻)
43grpbn0 18134 . . . 4 (𝐻 ∈ Grp → 𝑆 ≠ ∅)
54ad2antlr 725 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ≠ ∅)
6 grpmnd 18112 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
7 mndmgm 17920 . . . . . . . . . . 11 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
86, 7syl 17 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mgm)
9 grpmnd 18112 . . . . . . . . . . 11 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
10 mndmgm 17920 . . . . . . . . . . 11 (𝐻 ∈ Mnd → 𝐻 ∈ Mgm)
119, 10syl 17 . . . . . . . . . 10 (𝐻 ∈ Grp → 𝐻 ∈ Mgm)
128, 11anim12i 614 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1312adantr 483 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
1413ad2antrr 724 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
15 simpr 487 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
1615ad2antrr 724 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
17 simpr 487 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → 𝑎𝑆)
1817anim1i 616 . . . . . . 7 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎𝑆𝑏𝑆))
19 grpissubg.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2019, 3mgmsscl 17859 . . . . . . 7 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2114, 16, 18, 20syl3anc 1367 . . . . . 6 (((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) ∧ 𝑏𝑆) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
2221ralrimiva 3184 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)
23 simpl 485 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → 𝐺 ∈ Grp)
2423adantr 483 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐺 ∈ Grp)
25 simplr 767 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝐻 ∈ Grp)
2619sseq2i 3998 . . . . . . . . . . 11 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
2726biimpi 218 . . . . . . . . . 10 (𝑆𝐵𝑆 ⊆ (Base‘𝐺))
2827adantr 483 . . . . . . . . 9 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ (Base‘𝐺))
2928adantl 484 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ (Base‘𝐺))
30 ovres 7316 . . . . . . . . . . 11 ((𝑥𝑆𝑦𝑆) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
3130adantl 484 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐺)𝑦))
32 oveq 7164 . . . . . . . . . . . . 13 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3332adantl 484 . . . . . . . . . . . 12 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥(+g𝐻)𝑦) = (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦))
3433eqcomd 2829 . . . . . . . . . . 11 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3534ad2antlr 725 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥((+g𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g𝐻)𝑦))
3631, 35eqtr3d 2860 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
3736ralrimivva 3193 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
3824, 25, 3, 29, 37grpinvssd 18178 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑎𝑆 → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎)))
3938imp 409 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) = ((invg𝐺)‘𝑎))
40 eqid 2823 . . . . . . . 8 (invg𝐻) = (invg𝐻)
413, 40grpinvcl 18153 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4241ad4ant24 752 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐻)‘𝑎) ∈ 𝑆)
4339, 42eqeltrrd 2916 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → ((invg𝐺)‘𝑎) ∈ 𝑆)
4422, 43jca 514 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎𝑆) → (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
4544ralrimiva 3184 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))
46 eqid 2823 . . . . 5 (+g𝐺) = (+g𝐺)
47 eqid 2823 . . . . 5 (invg𝐺) = (invg𝐺)
4819, 46, 47issubg2 18296 . . . 4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
4948ad2antrr 724 . . 3 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑎𝑆 (∀𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆 ∧ ((invg𝐺)‘𝑎) ∈ 𝑆))))
502, 5, 45, 49mpbir3and 1338 . 2 (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺))
5150ex 415 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wss 3938  c0 4293   × cxp 5555  cres 5559  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Mgmcmgm 17852  Mndcmnd 17913  Grpcgrp 18105  invgcminusg 18106  SubGrpcsubg 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278
This theorem is referenced by:  resgrpisgrp  18302  pgrpsubgsymg  18539
  Copyright terms: Public domain W3C validator