Step | Hyp | Ref
| Expression |
1 | | simpl 487 |
. . . 4
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ 𝐵) |
2 | 1 | adantl 486 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ 𝐵) |
3 | | grpissubg.s |
. . . . 5
⊢ 𝑆 = (Base‘𝐻) |
4 | 3 | grpbn0 18189 |
. . . 4
⊢ (𝐻 ∈ Grp → 𝑆 ≠ ∅) |
5 | 4 | ad2antlr 727 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ≠ ∅) |
6 | | grpmnd 18166 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
7 | | mndmgm 17974 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) |
8 | 6, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mgm) |
9 | | grpmnd 18166 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) |
10 | | mndmgm 17974 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ Mnd → 𝐻 ∈ Mgm) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mgm) |
12 | 8, 11 | anim12i 616 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
13 | 12 | adantr 485 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
14 | 13 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
15 | | simpr 489 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
16 | 15 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
17 | | simpr 489 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
18 | 17 | anim1i 618 |
. . . . . . 7
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) |
19 | | grpissubg.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
20 | 19, 3 | mgmsscl 17913 |
. . . . . . 7
⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
21 | 14, 16, 18, 20 | syl3anc 1369 |
. . . . . 6
⊢
(((((𝐺 ∈ Grp
∧ 𝐻 ∈ Grp) ∧
(𝑆 ⊆ 𝐵 ∧
(+g‘𝐻) =
((+g‘𝐺)
↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
22 | 21 | ralrimiva 3114 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
23 | | simpl 487 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → 𝐺 ∈ Grp) |
24 | 23 | adantr 485 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝐺 ∈ Grp) |
25 | | simplr 769 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝐻 ∈ Grp) |
26 | 19 | sseq2i 3922 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (Base‘𝐺)) |
27 | 26 | biimpi 219 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ 𝐵 → 𝑆 ⊆ (Base‘𝐺)) |
28 | 27 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ⊆ (Base‘𝐺)) |
29 | 28 | adantl 486 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ (Base‘𝐺)) |
30 | | ovres 7308 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
31 | 30 | adantl 486 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐺)𝑦)) |
32 | | oveq 7154 |
. . . . . . . . . . . . 13
⊢
((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → (𝑥(+g‘𝐻)𝑦) = (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦)) |
33 | 32 | adantl 486 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑥(+g‘𝐻)𝑦) = (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦)) |
34 | 33 | eqcomd 2765 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐻)𝑦)) |
35 | 34 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑦) = (𝑥(+g‘𝐻)𝑦)) |
36 | 31, 35 | eqtr3d 2796 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
37 | 36 | ralrimivva 3121 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
38 | 24, 25, 3, 29, 37 | grpinvssd 18233 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑎 ∈ 𝑆 → ((invg‘𝐻)‘𝑎) = ((invg‘𝐺)‘𝑎))) |
39 | 38 | imp 411 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) = ((invg‘𝐺)‘𝑎)) |
40 | | eqid 2759 |
. . . . . . . 8
⊢
(invg‘𝐻) = (invg‘𝐻) |
41 | 3, 40 | grpinvcl 18208 |
. . . . . . 7
⊢ ((𝐻 ∈ Grp ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) ∈ 𝑆) |
42 | 41 | ad4ant24 754 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐻)‘𝑎) ∈ 𝑆) |
43 | 39, 42 | eqeltrrd 2854 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → ((invg‘𝐺)‘𝑎) ∈ 𝑆) |
44 | 22, 43 | jca 516 |
. . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ 𝑎 ∈ 𝑆) → (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
45 | 44 | ralrimiva 3114 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)) |
46 | | eqid 2759 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
47 | | eqid 2759 |
. . . . 5
⊢
(invg‘𝐺) = (invg‘𝐺) |
48 | 19, 46, 47 | issubg2 18351 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)))) |
49 | 48 | ad2antrr 726 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑎 ∈ 𝑆 (∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑎) ∈ 𝑆)))) |
50 | 2, 5, 45, 49 | mpbir3and 1340 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺)) |
51 | 50 | ex 417 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) |