| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndissubm | Structured version Visualization version GIF version | ||
| Description: If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. Analogous to grpissubg 19078. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| mndissubm.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndissubm.s | ⊢ 𝑆 = (Base‘𝐻) |
| mndissubm.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndissubm | ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ 𝐵) | |
| 2 | simpr2 1196 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 0 ∈ 𝑆) | |
| 3 | mndmgm 18668 | . . . . . . 7 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 4 | mndmgm 18668 | . . . . . . 7 ⊢ (𝐻 ∈ Mnd → 𝐻 ∈ Mgm) | |
| 5 | 3, 4 | anim12i 613 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
| 6 | 5 | ad2antrr 726 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
| 7 | 3simpb 1149 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) | |
| 8 | 7 | ad2antlr 727 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
| 9 | simpr 484 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) | |
| 10 | mndissubm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 11 | mndissubm.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝐻) | |
| 12 | 10, 11 | mgmsscl 18572 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 13 | 6, 8, 9, 12 | syl3anc 1373 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 14 | 13 | ralrimivva 3180 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 15 | mndissubm.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 16 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 10, 15, 16 | issubm 18730 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆))) |
| 18 | 17 | ad2antrr 726 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆))) |
| 19 | 1, 2, 14, 18 | mpbir3and 1343 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubMnd‘𝐺)) |
| 20 | 19 | ex 412 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mgmcmgm 18565 Mndcmnd 18661 SubMndcsubmnd 18709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 |
| This theorem is referenced by: resmndismnd 18735 submefmnd 18822 |
| Copyright terms: Public domain | W3C validator |