MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndissubm Structured version   Visualization version   GIF version

Theorem mndissubm 18734
Description: If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. Analogous to grpissubg 19078. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mndissubm.b 𝐵 = (Base‘𝐺)
mndissubm.s 𝑆 = (Base‘𝐻)
mndissubm.z 0 = (0g𝐺)
Assertion
Ref Expression
mndissubm ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))

Proof of Theorem mndissubm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆𝐵)
2 simpr2 1196 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 0𝑆)
3 mndmgm 18668 . . . . . . 7 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
4 mndmgm 18668 . . . . . . 7 (𝐻 ∈ Mnd → 𝐻 ∈ Mgm)
53, 4anim12i 613 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
65ad2antrr 726 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
7 3simpb 1149 . . . . . 6 ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
87ad2antlr 727 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
9 simpr 484 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑆𝑏𝑆))
10 mndissubm.b . . . . . 6 𝐵 = (Base‘𝐺)
11 mndissubm.s . . . . . 6 𝑆 = (Base‘𝐻)
1210, 11mgmsscl 18572 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
136, 8, 9, 12syl3anc 1373 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
1413ralrimivva 3180 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)
15 mndissubm.z . . . . 5 0 = (0g𝐺)
16 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
1710, 15, 16issubm 18730 . . . 4 (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)))
1817ad2antrr 726 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)))
191, 2, 14, 18mpbir3and 1343 . 2 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubMnd‘𝐺))
2019ex 412 1 ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mgmcmgm 18565  Mndcmnd 18661  SubMndcsubmnd 18709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711
This theorem is referenced by:  resmndismnd  18735  submefmnd  18822
  Copyright terms: Public domain W3C validator