MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndissubm Structured version   Visualization version   GIF version

Theorem mndissubm 17972
Description: If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. Analogous to grpissubg 18299. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mndissubm.b 𝐵 = (Base‘𝐺)
mndissubm.s 𝑆 = (Base‘𝐻)
mndissubm.z 0 = (0g𝐺)
Assertion
Ref Expression
mndissubm ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))

Proof of Theorem mndissubm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1190 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆𝐵)
2 simpr2 1191 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 0𝑆)
3 mndmgm 17918 . . . . . . 7 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
4 mndmgm 17918 . . . . . . 7 (𝐻 ∈ Mnd → 𝐻 ∈ Mgm)
53, 4anim12i 614 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
65ad2antrr 724 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
7 3simpb 1145 . . . . . 6 ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
87ad2antlr 725 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
9 simpr 487 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑆𝑏𝑆))
10 mndissubm.b . . . . . 6 𝐵 = (Base‘𝐺)
11 mndissubm.s . . . . . 6 𝑆 = (Base‘𝐻)
1210, 11mgmsscl 17857 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
136, 8, 9, 12syl3anc 1367 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
1413ralrimivva 3191 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)
15 mndissubm.z . . . . 5 0 = (0g𝐺)
16 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
1710, 15, 16issubm 17968 . . . 4 (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)))
1817ad2antrr 724 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)))
191, 2, 14, 18mpbir3and 1338 . 2 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubMnd‘𝐺))
2019ex 415 1 ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wss 3936   × cxp 5553  cres 5557  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Mgmcmgm 17850  Mndcmnd 17911  SubMndcsubmnd 17955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-res 5567  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957
This theorem is referenced by:  resmndismnd  17973  submefmnd  18060
  Copyright terms: Public domain W3C validator