![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4185. Partial converse of unssd 4187. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4185 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 496 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∪ cun 3947 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 |
This theorem is referenced by: naddcllem 8675 ersym 8715 findcard2d 9166 finsschain 9359 r0weon 10007 ackbij1lem16 10230 wunex2 10733 sumsplit 15714 fsumabs 15747 fsumiun 15767 mrieqvlemd 17573 yonedalem1 18225 yonedalem21 18226 yonedalem22 18231 yonffthlem 18235 lsmsp 20697 mplcoe1 21592 mdetunilem9 22122 ordtbas 22696 isufil2 23412 ufileu 23423 filufint 23424 fmfnfm 23462 flimclslem 23488 fclsfnflim 23531 flimfnfcls 23532 imasdsf1olem 23879 limcdif 25393 jensenlem1 26491 jensenlem2 26492 jensen 26493 gsumvsca1 32402 gsumvsca2 32403 qsdrngilem 32639 algextdeglem1 32803 ordtconnlem1 32935 ssmcls 34589 mclsppslem 34605 rngunsnply 41963 mptrcllem 42412 clcnvlem 42422 brtrclfv2 42526 isotone1 42847 dvnprodlem1 44710 |
Copyright terms: Public domain | W3C validator |