| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4156. Partial converse of unssd 4158. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4156 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3915 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 |
| This theorem is referenced by: naddcllem 8643 ersym 8686 findcard2d 9136 finsschain 9317 r0weon 9972 ackbij1lem16 10194 wunex2 10698 sumsplit 15741 fsumabs 15774 fsumiun 15794 mrieqvlemd 17597 yonedalem1 18240 yonedalem21 18241 yonedalem22 18246 yonffthlem 18250 lsmsp 21000 mplcoe1 21951 mdetunilem9 22514 ordtbas 23086 isufil2 23802 ufileu 23813 filufint 23814 fmfnfm 23852 flimclslem 23878 fclsfnflim 23921 flimfnfcls 23922 imasdsf1olem 24268 limcdif 25784 jensenlem1 26904 jensenlem2 26905 jensen 26906 gsumvsca1 33186 gsumvsca2 33187 qsdrngilem 33472 fldgenfldext 33670 evls1fldgencl 33672 fldextrspunlem1 33677 fldextrspunfld 33678 algextdeglem1 33714 algextdeglem2 33715 algextdeglem3 33716 algextdeglem4 33717 constrextdg2lem 33745 constrllcllem 33749 constrlccllem 33750 constrcccllem 33751 ordtconnlem1 33921 ssmcls 35561 mclsppslem 35577 rngunsnply 43165 mptrcllem 43609 clcnvlem 43619 brtrclfv2 43723 isotone1 44044 dvnprodlem1 45951 |
| Copyright terms: Public domain | W3C validator |