![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4200. Partial converse of unssd 4202. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4200 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3961 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 |
This theorem is referenced by: naddcllem 8713 ersym 8756 findcard2d 9205 finsschain 9397 r0weon 10050 ackbij1lem16 10272 wunex2 10776 sumsplit 15801 fsumabs 15834 fsumiun 15854 mrieqvlemd 17674 yonedalem1 18329 yonedalem21 18330 yonedalem22 18335 yonffthlem 18339 lsmsp 21103 mplcoe1 22073 mdetunilem9 22642 ordtbas 23216 isufil2 23932 ufileu 23943 filufint 23944 fmfnfm 23982 flimclslem 24008 fclsfnflim 24051 flimfnfcls 24052 imasdsf1olem 24399 limcdif 25926 jensenlem1 27045 jensenlem2 27046 jensen 27047 gsumvsca1 33215 gsumvsca2 33216 qsdrngilem 33502 fldgenfldext 33693 evls1fldgencl 33695 algextdeglem1 33723 algextdeglem2 33724 algextdeglem3 33725 algextdeglem4 33726 ordtconnlem1 33885 ssmcls 35552 mclsppslem 35568 rngunsnply 43158 mptrcllem 43603 clcnvlem 43613 brtrclfv2 43717 isotone1 44038 dvnprodlem1 45902 |
Copyright terms: Public domain | W3C validator |