Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4114. Partial converse of unssd 4116. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4114 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: ersym 8468 findcard2d 8911 finsschain 9056 r0weon 9699 ackbij1lem16 9922 wunex2 10425 sumsplit 15408 fsumabs 15441 fsumiun 15461 mrieqvlemd 17255 yonedalem1 17906 yonedalem21 17907 yonedalem22 17912 yonffthlem 17916 lsmsp 20263 mplcoe1 21148 mdetunilem9 21677 ordtbas 22251 isufil2 22967 ufileu 22978 filufint 22979 fmfnfm 23017 flimclslem 23043 fclsfnflim 23086 flimfnfcls 23087 imasdsf1olem 23434 limcdif 24945 jensenlem1 26041 jensenlem2 26042 jensen 26043 gsumvsca1 31381 gsumvsca2 31382 ordtconnlem1 31776 ssmcls 33429 mclsppslem 33445 naddcllem 33758 rngunsnply 40914 mptrcllem 41110 clcnvlem 41120 brtrclfv2 41224 isotone1 41547 dvnprodlem1 43377 |
Copyright terms: Public domain | W3C validator |