Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4118. Partial converse of unssd 4120. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4118 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 495 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∪ cun 3885 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 |
This theorem is referenced by: ersym 8510 findcard2d 8949 finsschain 9126 r0weon 9768 ackbij1lem16 9991 wunex2 10494 sumsplit 15480 fsumabs 15513 fsumiun 15533 mrieqvlemd 17338 yonedalem1 17990 yonedalem21 17991 yonedalem22 17996 yonffthlem 18000 lsmsp 20348 mplcoe1 21238 mdetunilem9 21769 ordtbas 22343 isufil2 23059 ufileu 23070 filufint 23071 fmfnfm 23109 flimclslem 23135 fclsfnflim 23178 flimfnfcls 23179 imasdsf1olem 23526 limcdif 25040 jensenlem1 26136 jensenlem2 26137 jensen 26138 gsumvsca1 31479 gsumvsca2 31480 ordtconnlem1 31874 ssmcls 33529 mclsppslem 33545 naddcllem 33831 rngunsnply 40998 mptrcllem 41221 clcnvlem 41231 brtrclfv2 41335 isotone1 41658 dvnprodlem1 43487 |
Copyright terms: Public domain | W3C validator |