| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4143. Partial converse of unssd 4145. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4143 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3903 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 |
| This theorem is referenced by: naddcllem 8601 ersym 8644 findcard2d 9090 finsschain 9268 r0weon 9925 ackbij1lem16 10147 wunex2 10651 sumsplit 15693 fsumabs 15726 fsumiun 15746 mrieqvlemd 17553 yonedalem1 18196 yonedalem21 18197 yonedalem22 18202 yonffthlem 18206 lsmsp 21008 mplcoe1 21960 mdetunilem9 22523 ordtbas 23095 isufil2 23811 ufileu 23822 filufint 23823 fmfnfm 23861 flimclslem 23887 fclsfnflim 23930 flimfnfcls 23931 imasdsf1olem 24277 limcdif 25793 jensenlem1 26913 jensenlem2 26914 jensen 26915 gsumvsca1 33178 gsumvsca2 33179 qsdrngilem 33441 fldgenfldext 33639 evls1fldgencl 33641 fldextrspunlem1 33646 fldextrspunfld 33647 algextdeglem1 33683 algextdeglem2 33684 algextdeglem3 33685 algextdeglem4 33686 constrextdg2lem 33714 constrllcllem 33718 constrlccllem 33719 constrcccllem 33720 ordtconnlem1 33890 ssmcls 35539 mclsppslem 35555 rngunsnply 43142 mptrcllem 43586 clcnvlem 43596 brtrclfv2 43700 isotone1 44021 dvnprodlem1 45928 |
| Copyright terms: Public domain | W3C validator |