Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4117. Partial converse of unssd 4119. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4117 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 495 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∪ cun 3884 ⊆ wss 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-un 3891 df-in 3893 df-ss 3903 |
This theorem is referenced by: ersym 8497 findcard2d 8936 finsschain 9113 r0weon 9778 ackbij1lem16 10001 wunex2 10504 sumsplit 15490 fsumabs 15523 fsumiun 15543 mrieqvlemd 17348 yonedalem1 18000 yonedalem21 18001 yonedalem22 18006 yonffthlem 18010 lsmsp 20358 mplcoe1 21248 mdetunilem9 21779 ordtbas 22353 isufil2 23069 ufileu 23080 filufint 23081 fmfnfm 23119 flimclslem 23145 fclsfnflim 23188 flimfnfcls 23189 imasdsf1olem 23536 limcdif 25050 jensenlem1 26146 jensenlem2 26147 jensen 26148 gsumvsca1 31487 gsumvsca2 31488 ordtconnlem1 31882 ssmcls 33537 mclsppslem 33553 naddcllem 33839 rngunsnply 41006 mptrcllem 41202 clcnvlem 41212 brtrclfv2 41316 isotone1 41639 dvnprodlem1 43468 |
Copyright terms: Public domain | W3C validator |