![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4213. Partial converse of unssd 4215. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4213 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: naddcllem 8732 ersym 8775 findcard2d 9232 finsschain 9429 r0weon 10081 ackbij1lem16 10303 wunex2 10807 sumsplit 15816 fsumabs 15849 fsumiun 15869 mrieqvlemd 17687 yonedalem1 18342 yonedalem21 18343 yonedalem22 18348 yonffthlem 18352 lsmsp 21108 mplcoe1 22078 mdetunilem9 22647 ordtbas 23221 isufil2 23937 ufileu 23948 filufint 23949 fmfnfm 23987 flimclslem 24013 fclsfnflim 24056 flimfnfcls 24057 imasdsf1olem 24404 limcdif 25931 jensenlem1 27048 jensenlem2 27049 jensen 27050 gsumvsca1 33205 gsumvsca2 33206 qsdrngilem 33487 fldgenfldext 33678 evls1fldgencl 33680 algextdeglem1 33708 algextdeglem2 33709 algextdeglem3 33710 algextdeglem4 33711 ordtconnlem1 33870 ssmcls 35535 mclsppslem 35551 rngunsnply 43130 mptrcllem 43575 clcnvlem 43585 brtrclfv2 43689 isotone1 44010 dvnprodlem1 45867 |
Copyright terms: Public domain | W3C validator |