| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4139. Partial converse of unssd 4141. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4139 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3896 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 |
| This theorem is referenced by: naddcllem 8597 ersym 8640 findcard2d 9083 finsschain 9250 r0weon 9910 ackbij1lem16 10132 wunex2 10636 sumsplit 15677 fsumabs 15710 fsumiun 15730 mrieqvlemd 17537 yonedalem1 18180 yonedalem21 18181 yonedalem22 18186 yonffthlem 18190 lsmsp 21022 mplcoe1 21973 mdetunilem9 22536 ordtbas 23108 isufil2 23824 ufileu 23835 filufint 23836 fmfnfm 23874 flimclslem 23900 fclsfnflim 23943 flimfnfcls 23944 imasdsf1olem 24289 limcdif 25805 jensenlem1 26925 jensenlem2 26926 jensen 26927 gsumvsca1 33202 gsumvsca2 33203 qsdrngilem 33466 fldgenfldext 33702 evls1fldgencl 33704 fldextrspunlem1 33709 fldextrspunfld 33710 algextdeglem1 33751 algextdeglem2 33752 algextdeglem3 33753 algextdeglem4 33754 constrextdg2lem 33782 constrllcllem 33786 constrlccllem 33787 constrcccllem 33788 ordtconnlem1 33958 ssmcls 35632 mclsppslem 35648 rngunsnply 43286 mptrcllem 43730 clcnvlem 43740 brtrclfv2 43844 isotone1 44165 dvnprodlem1 46068 |
| Copyright terms: Public domain | W3C validator |