MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unssad Structured version   Visualization version   GIF version

Theorem unssad 4203
Description: If (𝐴𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4200. Partial converse of unssd 4202. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Assertion
Ref Expression
unssad (𝜑𝐴𝐶)

Proof of Theorem unssad
StepHypRef Expression
1 unssad.1 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
2 unss 4200 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
31, 2sylibr 234 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
43simpld 494 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3961  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980
This theorem is referenced by:  naddcllem  8713  ersym  8756  findcard2d  9205  finsschain  9397  r0weon  10050  ackbij1lem16  10272  wunex2  10776  sumsplit  15801  fsumabs  15834  fsumiun  15854  mrieqvlemd  17674  yonedalem1  18329  yonedalem21  18330  yonedalem22  18335  yonffthlem  18339  lsmsp  21103  mplcoe1  22073  mdetunilem9  22642  ordtbas  23216  isufil2  23932  ufileu  23943  filufint  23944  fmfnfm  23982  flimclslem  24008  fclsfnflim  24051  flimfnfcls  24052  imasdsf1olem  24399  limcdif  25926  jensenlem1  27045  jensenlem2  27046  jensen  27047  gsumvsca1  33215  gsumvsca2  33216  qsdrngilem  33502  fldgenfldext  33693  evls1fldgencl  33695  algextdeglem1  33723  algextdeglem2  33724  algextdeglem3  33725  algextdeglem4  33726  ordtconnlem1  33885  ssmcls  35552  mclsppslem  35568  rngunsnply  43158  mptrcllem  43603  clcnvlem  43613  brtrclfv2  43717  isotone1  44038  dvnprodlem1  45902
  Copyright terms: Public domain W3C validator