| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4153. Partial converse of unssd 4155. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4153 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 |
| This theorem is referenced by: naddcllem 8640 ersym 8683 findcard2d 9130 finsschain 9310 r0weon 9965 ackbij1lem16 10187 wunex2 10691 sumsplit 15734 fsumabs 15767 fsumiun 15787 mrieqvlemd 17590 yonedalem1 18233 yonedalem21 18234 yonedalem22 18239 yonffthlem 18243 lsmsp 20993 mplcoe1 21944 mdetunilem9 22507 ordtbas 23079 isufil2 23795 ufileu 23806 filufint 23807 fmfnfm 23845 flimclslem 23871 fclsfnflim 23914 flimfnfcls 23915 imasdsf1olem 24261 limcdif 25777 jensenlem1 26897 jensenlem2 26898 jensen 26899 gsumvsca1 33179 gsumvsca2 33180 qsdrngilem 33465 fldgenfldext 33663 evls1fldgencl 33665 fldextrspunlem1 33670 fldextrspunfld 33671 algextdeglem1 33707 algextdeglem2 33708 algextdeglem3 33709 algextdeglem4 33710 constrextdg2lem 33738 constrllcllem 33742 constrlccllem 33743 constrcccllem 33744 ordtconnlem1 33914 ssmcls 35554 mclsppslem 35570 rngunsnply 43158 mptrcllem 43602 clcnvlem 43612 brtrclfv2 43716 isotone1 44037 dvnprodlem1 45944 |
| Copyright terms: Public domain | W3C validator |