| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4140. Partial converse of unssd 4142. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4140 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 |
| This theorem is referenced by: naddcllem 8591 ersym 8634 findcard2d 9076 finsschain 9243 r0weon 9900 ackbij1lem16 10122 wunex2 10626 sumsplit 15672 fsumabs 15705 fsumiun 15725 mrieqvlemd 17532 yonedalem1 18175 yonedalem21 18176 yonedalem22 18181 yonffthlem 18185 lsmsp 21018 mplcoe1 21970 mdetunilem9 22533 ordtbas 23105 isufil2 23821 ufileu 23832 filufint 23833 fmfnfm 23871 flimclslem 23897 fclsfnflim 23940 flimfnfcls 23941 imasdsf1olem 24286 limcdif 25802 jensenlem1 26922 jensenlem2 26923 jensen 26924 gsumvsca1 33190 gsumvsca2 33191 qsdrngilem 33454 fldgenfldext 33676 evls1fldgencl 33678 fldextrspunlem1 33683 fldextrspunfld 33684 algextdeglem1 33725 algextdeglem2 33726 algextdeglem3 33727 algextdeglem4 33728 constrextdg2lem 33756 constrllcllem 33760 constrlccllem 33761 constrcccllem 33762 ordtconnlem1 33932 ssmcls 35599 mclsppslem 35615 rngunsnply 43201 mptrcllem 43645 clcnvlem 43655 brtrclfv2 43759 isotone1 44080 dvnprodlem1 45983 |
| Copyright terms: Public domain | W3C validator |