| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4165. Partial converse of unssd 4167. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4165 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3924 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 |
| This theorem is referenced by: naddcllem 8688 ersym 8731 findcard2d 9180 finsschain 9371 r0weon 10026 ackbij1lem16 10248 wunex2 10752 sumsplit 15784 fsumabs 15817 fsumiun 15837 mrieqvlemd 17641 yonedalem1 18284 yonedalem21 18285 yonedalem22 18290 yonffthlem 18294 lsmsp 21044 mplcoe1 21995 mdetunilem9 22558 ordtbas 23130 isufil2 23846 ufileu 23857 filufint 23858 fmfnfm 23896 flimclslem 23922 fclsfnflim 23965 flimfnfcls 23966 imasdsf1olem 24312 limcdif 25829 jensenlem1 26949 jensenlem2 26950 jensen 26951 gsumvsca1 33223 gsumvsca2 33224 qsdrngilem 33509 fldgenfldext 33709 evls1fldgencl 33711 fldextrspunlem1 33716 fldextrspunfld 33717 algextdeglem1 33751 algextdeglem2 33752 algextdeglem3 33753 algextdeglem4 33754 constrextdg2lem 33782 constrllcllem 33786 constrlccllem 33787 constrcccllem 33788 ordtconnlem1 33955 ssmcls 35589 mclsppslem 35605 rngunsnply 43193 mptrcllem 43637 clcnvlem 43647 brtrclfv2 43751 isotone1 44072 dvnprodlem1 45975 |
| Copyright terms: Public domain | W3C validator |