Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptsnun Structured version   Visualization version   GIF version

Theorem mptsnun 37307
Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.)
Hypotheses
Ref Expression
mptsnun.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
mptsnun.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
mptsnun (𝐵𝐴𝐵 = (𝐹𝐵))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑢)   𝐹(𝑥,𝑢)

Proof of Theorem mptsnun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sneq 4658 . . . . 5 (𝑥 = 𝑦 → {𝑥} = {𝑦})
21cbvmptv 5279 . . . 4 (𝑥𝐴 ↦ {𝑥}) = (𝑦𝐴 ↦ {𝑦})
32eqcomi 2749 . . 3 (𝑦𝐴 ↦ {𝑦}) = (𝑥𝐴 ↦ {𝑥})
4 mptsnun.r . . 3 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
53, 4mptsnunlem 37306 . 2 (𝐵𝐴𝐵 = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵))
6 mptsnun.f . . . . 5 𝐹 = (𝑥𝐴 ↦ {𝑥})
76, 2eqtri 2768 . . . 4 𝐹 = (𝑦𝐴 ↦ {𝑦})
87imaeq1i 6088 . . 3 (𝐹𝐵) = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵)
98unieqi 4943 . 2 (𝐹𝐵) = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵)
105, 9eqtr4di 2798 1 (𝐵𝐴𝐵 = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2717  wrex 3076  wss 3976  {csn 4648   cuni 4931  cmpt 5249  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  dissneqlem  37308
  Copyright terms: Public domain W3C validator