Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptsnun Structured version   Visualization version   GIF version

Theorem mptsnun 35510
Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.)
Hypotheses
Ref Expression
mptsnun.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
mptsnun.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
mptsnun (𝐵𝐴𝐵 = (𝐹𝐵))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑢)   𝐹(𝑥,𝑢)

Proof of Theorem mptsnun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sneq 4571 . . . . 5 (𝑥 = 𝑦 → {𝑥} = {𝑦})
21cbvmptv 5187 . . . 4 (𝑥𝐴 ↦ {𝑥}) = (𝑦𝐴 ↦ {𝑦})
32eqcomi 2747 . . 3 (𝑦𝐴 ↦ {𝑦}) = (𝑥𝐴 ↦ {𝑥})
4 mptsnun.r . . 3 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
53, 4mptsnunlem 35509 . 2 (𝐵𝐴𝐵 = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵))
6 mptsnun.f . . . . 5 𝐹 = (𝑥𝐴 ↦ {𝑥})
76, 2eqtri 2766 . . . 4 𝐹 = (𝑦𝐴 ↦ {𝑦})
87imaeq1i 5966 . . 3 (𝐹𝐵) = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵)
98unieqi 4852 . 2 (𝐹𝐵) = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵)
105, 9eqtr4di 2796 1 (𝐵𝐴𝐵 = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2715  wrex 3065  wss 3887  {csn 4561   cuni 4839  cmpt 5157  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  dissneqlem  35511
  Copyright terms: Public domain W3C validator