Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptsnun | Structured version Visualization version GIF version |
Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.) |
Ref | Expression |
---|---|
mptsnun.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
mptsnun.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Ref | Expression |
---|---|
mptsnun | ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4571 | . . . . 5 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
2 | 1 | cbvmptv 5187 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
3 | 2 | eqcomi 2747 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↦ {𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
4 | mptsnun.r | . . 3 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
5 | 3, 4 | mptsnunlem 35509 | . 2 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵)) |
6 | mptsnun.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
7 | 6, 2 | eqtri 2766 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
8 | 7 | imaeq1i 5966 | . . 3 ⊢ (𝐹 “ 𝐵) = ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
9 | 8 | unieqi 4852 | . 2 ⊢ ∪ (𝐹 “ 𝐵) = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
10 | 5, 9 | eqtr4di 2796 | 1 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∃wrex 3065 ⊆ wss 3887 {csn 4561 ∪ cuni 4839 ↦ cmpt 5157 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: dissneqlem 35511 |
Copyright terms: Public domain | W3C validator |