Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptsnun Structured version   Visualization version   GIF version

Theorem mptsnun 35437
Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.)
Hypotheses
Ref Expression
mptsnun.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
mptsnun.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
mptsnun (𝐵𝐴𝐵 = (𝐹𝐵))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑢)   𝐹(𝑥,𝑢)

Proof of Theorem mptsnun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sneq 4568 . . . . 5 (𝑥 = 𝑦 → {𝑥} = {𝑦})
21cbvmptv 5183 . . . 4 (𝑥𝐴 ↦ {𝑥}) = (𝑦𝐴 ↦ {𝑦})
32eqcomi 2747 . . 3 (𝑦𝐴 ↦ {𝑦}) = (𝑥𝐴 ↦ {𝑥})
4 mptsnun.r . . 3 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
53, 4mptsnunlem 35436 . 2 (𝐵𝐴𝐵 = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵))
6 mptsnun.f . . . . 5 𝐹 = (𝑥𝐴 ↦ {𝑥})
76, 2eqtri 2766 . . . 4 𝐹 = (𝑦𝐴 ↦ {𝑦})
87imaeq1i 5955 . . 3 (𝐹𝐵) = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵)
98unieqi 4849 . 2 (𝐹𝐵) = ((𝑦𝐴 ↦ {𝑦}) “ 𝐵)
105, 9eqtr4di 2797 1 (𝐵𝐴𝐵 = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2715  wrex 3064  wss 3883  {csn 4558   cuni 4836  cmpt 5153  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  dissneqlem  35438
  Copyright terms: Public domain W3C validator