| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptsnun | Structured version Visualization version GIF version | ||
| Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.) |
| Ref | Expression |
|---|---|
| mptsnun.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| mptsnun.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Ref | Expression |
|---|---|
| mptsnun | ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4586 | . . . . 5 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 2 | 1 | cbvmptv 5195 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
| 3 | 2 | eqcomi 2740 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↦ {𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| 4 | mptsnun.r | . . 3 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
| 5 | 3, 4 | mptsnunlem 37371 | . 2 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵)) |
| 6 | mptsnun.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
| 7 | 6, 2 | eqtri 2754 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
| 8 | 7 | imaeq1i 6006 | . . 3 ⊢ (𝐹 “ 𝐵) = ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
| 9 | 8 | unieqi 4871 | . 2 ⊢ ∪ (𝐹 “ 𝐵) = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
| 10 | 5, 9 | eqtr4di 2784 | 1 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2709 ∃wrex 3056 ⊆ wss 3902 {csn 4576 ∪ cuni 4859 ↦ cmpt 5172 “ cima 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: dissneqlem 37373 |
| Copyright terms: Public domain | W3C validator |