| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptsnun | Structured version Visualization version GIF version | ||
| Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.) |
| Ref | Expression |
|---|---|
| mptsnun.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| mptsnun.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Ref | Expression |
|---|---|
| mptsnun | ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4585 | . . . . 5 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 2 | 1 | cbvmptv 5197 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
| 3 | 2 | eqcomi 2742 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↦ {𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| 4 | mptsnun.r | . . 3 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
| 5 | 3, 4 | mptsnunlem 37403 | . 2 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵)) |
| 6 | mptsnun.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
| 7 | 6, 2 | eqtri 2756 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
| 8 | 7 | imaeq1i 6010 | . . 3 ⊢ (𝐹 “ 𝐵) = ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
| 9 | 8 | unieqi 4870 | . 2 ⊢ ∪ (𝐹 “ 𝐵) = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
| 10 | 5, 9 | eqtr4di 2786 | 1 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2711 ∃wrex 3057 ⊆ wss 3898 {csn 4575 ∪ cuni 4858 ↦ cmpt 5174 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: dissneqlem 37405 |
| Copyright terms: Public domain | W3C validator |