| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptsnun | Structured version Visualization version GIF version | ||
| Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.) |
| Ref | Expression |
|---|---|
| mptsnun.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| mptsnun.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Ref | Expression |
|---|---|
| mptsnun | ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4616 | . . . . 5 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 2 | 1 | cbvmptv 5235 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
| 3 | 2 | eqcomi 2743 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↦ {𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| 4 | mptsnun.r | . . 3 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
| 5 | 3, 4 | mptsnunlem 37298 | . 2 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵)) |
| 6 | mptsnun.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
| 7 | 6, 2 | eqtri 2757 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
| 8 | 7 | imaeq1i 6055 | . . 3 ⊢ (𝐹 “ 𝐵) = ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
| 9 | 8 | unieqi 4899 | . 2 ⊢ ∪ (𝐹 “ 𝐵) = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
| 10 | 5, 9 | eqtr4di 2787 | 1 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 {cab 2712 ∃wrex 3059 ⊆ wss 3931 {csn 4606 ∪ cuni 4887 ↦ cmpt 5205 “ cima 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 |
| This theorem is referenced by: dissneqlem 37300 |
| Copyright terms: Public domain | W3C validator |