Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptsnun | Structured version Visualization version GIF version |
Description: A class 𝐵 is equal to the union of the class of all singletons of elements of 𝐵. (Contributed by ML, 16-Jul-2020.) |
Ref | Expression |
---|---|
mptsnun.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
mptsnun.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Ref | Expression |
---|---|
mptsnun | ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4580 | . . . . 5 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
2 | 1 | cbvmptv 5199 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
3 | 2 | eqcomi 2745 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↦ {𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
4 | mptsnun.r | . . 3 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
5 | 3, 4 | mptsnunlem 35586 | . 2 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵)) |
6 | mptsnun.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
7 | 6, 2 | eqtri 2764 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ {𝑦}) |
8 | 7 | imaeq1i 5983 | . . 3 ⊢ (𝐹 “ 𝐵) = ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
9 | 8 | unieqi 4862 | . 2 ⊢ ∪ (𝐹 “ 𝐵) = ∪ ((𝑦 ∈ 𝐴 ↦ {𝑦}) “ 𝐵) |
10 | 5, 9 | eqtr4di 2794 | 1 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = ∪ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 {cab 2713 ∃wrex 3070 ⊆ wss 3896 {csn 4570 ∪ cuni 4849 ↦ cmpt 5169 “ cima 5610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-xp 5613 df-rel 5614 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 |
This theorem is referenced by: dissneqlem 35588 |
Copyright terms: Public domain | W3C validator |